Pharmaceutical Research

, Volume 23, Issue 8, pp 1888–1897 | Cite as

Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API

  • Daniel P. McNamaraEmail author
  • Scott L. Childs
  • Jennifer Giordano
  • Anthony Iarriccio
  • James Cassidy
  • Manjunath S. Shet
  • Richard Mannion
  • Ed O'Donnell
  • Aeri Park
Research Paper


The bioavailability of a development candidate active pharmaceutical ingredient (API) was very low after oral dosing in dogs. In order to improve bioavailability, we sought to increase the dissolution rate of the solid form of the API. When traditional methods of forming salts and amorphous material failed to produce a viable solid form for continued development, we turned to the non-traditional approach of cocrystallization.


A crystal engineering approach was used to design and execute a cocrystal screen of the API. Hydrogen bonding between the API and pharmaceutically acceptable carboxylic acids was identified as a viable synthon for associating multiple components in the solid state. A number of carboxylic acid guest molecules were tested for cocrystal formation with the API.


A cocrystal containing the API and glutaric acid in a 1:1 molecular ratio was identified and the single crystal structure is reported. Physical characterization of the cocrystal showed that it is unique regarding thermal, spectroscopic, X-ray, and dissolution properties. The cocrystal solid is nonhygroscopic, and chemically and physically stable to thermal stress. Use of the cocrystal increased the aqueous dissolution rate by 18 times as compared to the homomeric crystalline form of the drug. Single dose dog exposure studies confirmed that the cocrystal increased plasma AUC values by three times at two different dose levels.


APIs that are non-ionizable or demonstrate poor salt forming ability traditionally present few opportunities for creating crystalline solid forms with desired physical properties. Cocrystals are an additional class of crystalline solid that can provide options for improved properties. In this case, a crystalline molecular complex of glutaric acid and an API was identified and used to demonstrate an improvement in the oral bioavailability of the API in dogs.

Key words

bioavailability cocrystal crystal engineering intrinsic dissolution rate pharmacokinetics solubility 



The authors thank Dr. Ken Hardcastle at the Emory University Chemistry Department X-Ray Diffraction Center for collecting and solving the single crystal structure of the cocrystal. The authors also acknowledge the support of Drs. Phil Goliber and Leah Lipsich of Purdue Pharma L. P.


  1. 1.
    G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–419 (1995).PubMedCrossRefGoogle Scholar
  2. 2.
    Calculated using Advanced Chemistry Development (ACD/Labs) Software Solaris V4.67 (1994–2005 ACD/Labs).Google Scholar
  3. 3.
    M. Yazdanian, S. L. Glynn, J. L. Wright, and A. Hawi. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res. 15(9):1490–1494 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    S. L. Childs, L. C. Chyall, J. T. Dunlap, V. N. Smolenskaya, B. C. Stahly, and G. P. Stahly. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoexetine hydrochloride with benzoic, succinic, and fumaric acids. J. Am. Chem. Soc. 126:13335–13342 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    J. F. Remenar, S. L. Morissette, M. L. Peterson, B. Moulton, J. M. MacPhee, H. R. Guzman, and O. Almarsson. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J. Am. Chem. Soc. 125:8456–8457 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    J. W. Bettis, J. L. Lach, and J. Hood. Effect of complexation with phenobarbital on biologic availability of theophylline from 3 tablet formulations. Am. J. Hosp. Pharm. 30(3):240–243 (1973).PubMedGoogle Scholar
  7. 7.
    J. Bernstein, M. C. Etter, and L. Leiserowitz. The role of hydrogen bonding in molecular assemblies. In H.-B. D. Buergi, and Jack D (eds.), Struct. Correl., VCH, Weinheim, Germany, 1994, pp. 431–507.CrossRefGoogle Scholar
  8. 8.
    I. D. H. Oswald, D. R. Allan, P. A. McGregor, W. D. S. Motherwell, S. Parsons, and C. R. Pulham. The formation of paracetamol (acetaminophen) adducts with hydrogen-bond acceptors. Acta Crystallogr. Sect. B-Struct. Commun. 58:1057–1066 (2002).CrossRefGoogle Scholar
  9. 9.
    N. Sardone, G. Bettinetti, and M. Sorrenti. Trimethoprim-sulfadimidine 1:2 molecular complex monohydrate. Acta Crystallogr., C Cryst. Struct. Commun. 53:1295–1299 (1997).CrossRefGoogle Scholar
  10. 10.
    S. Nakao, S. Fujii, T. Sakaki, and K. I. Tomita. Crystal and molecular-structure of 2-1 molecular-complex of theophylline with phenobarbital. Acta Crystallogr. Sect. B-Struct. Commun. 33:1373–1378 (1977) (MAY13).CrossRefGoogle Scholar
  11. 11.
    M. R. Caira, T. G. Dekker, and W. Liebenberg. Structure of a 1:1 complex between the anthelmintic drug mebendazole and propionic acid. J. Chem. Crystallogr. 28(1):11–15 (1998).CrossRefGoogle Scholar
  12. 12.
    M. C. Etter, and G. M. Frankenbach. Hydrogen-bond directed cocrystallization as a tool for designing acentric organic solids. Chem. Mater. 1(1):10–12 (1989).CrossRefGoogle Scholar
  13. 13.
    C. B. Aakeroy. Crystal engineering: strategies and architectures. Acta Crystallogr. Sect. B-Struct. Commun. 53:569–586 (1997).CrossRefGoogle Scholar
  14. 14.
    M. C. Etter and D. A. Adsmond. The use of cocrystallization as a method of studying hydrogen-bond preferences of 2-aminopyrimidine. J. Chem. Soc., Chem. Commun. 8:589–591 (1990).CrossRefGoogle Scholar
  15. 15.
    G. R. Desiraju. Supramolecular synthons in crystal engineering—a new organic-synthesis. Angew. Chem.-Int. Edit. Engl. 34(21):2311–2327 (1995).CrossRefGoogle Scholar
  16. 16.
    A. Nangia and G. R. Desiraju. Supramolecular structures—reason and imagination. Acta Crystallogr. Sect. A 54:934–944 (1998).CrossRefGoogle Scholar
  17. 17.
    B. Rodriguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. Rodriguez-Hornedo. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv. Drug Deliv. Rev. 56(3):241–274 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    J. J. Kane, T. Nguyen, J. Xiao, F. W. Fowler, and J. W. Lauher. The host guest co-crystal approach to supramolecular structure. Mol. Cryst. Liquid Cryst. 356:449–458 (2001).CrossRefGoogle Scholar
  19. 19.
    P. Vishweshwar, A. Nangia, and V. M. Lynch. Molecular complexes of homologous alkanedicarboxylic acids with isonicotinamide: X-ray crystal structures, hydrogen bond synthons, and melting point alternation. Cryst. Growth Des. 3(5):783–790 (2003).CrossRefGoogle Scholar
  20. 20.
    P. Vishweshwar, A. Nangia, and V. M. Lynch. Supramolecular synthons in phenol-isonicotinamide adducts. Crystengcomm.: 164–168 (2003).Google Scholar
  21. 21.
    M. C. Etter. Aggregate structures of carboxylic acids and amides. Isr. J. Chem. 25(3–4):312–319 (1985).Google Scholar
  22. 22.
    SMART Version 5.55, 2000, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison Wisconsin 53711–5373.Google Scholar
  23. 23.
    SAINT Version 6.02, 1999, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison Wisconsin 53711–5373.Google Scholar
  24. 24.
    SHELXTL V5.10, 1997, Bruker AXS, Inc., Analytical X-ray Systems, 5465 East Cheryl Parkway, Madison Wisconsin 53711–5373.Google Scholar
  25. 25.
    A. J. C. Wilson (ed.), International Tables for X-ray Crystallography, Volume C. Kynoch, Academic, Dordrecht, 1992, Tables (pp. 500–502) and (pp. 219–222).Google Scholar
  26. 26.
    C. G. S. Wermuth. P. H. Handbook of Pharmaceutical Salts; Properties, Selection, and Use (P. H. W. Stahl, C. G., ed.). Verlag Helvitica Chimica Acta, Zurich and Wiley-VCH: Weinheim, 306 (2002).Google Scholar
  27. 27.
    W. C. McCrone, Jr., Fusion Methods in Chemical Microscopy. Interscience, New York, 1957.Google Scholar
  28. 28.
    A. Kofler. Behavior of crystalline solid solution during melting and crystallization. Mikroskopie. 11(5–6):140–155 (1956).PubMedGoogle Scholar
  29. 29.
    M. Kunhert-Brandstaetter. 40 Years of Kofler methods. Pharma Int. (Engl. Ed.) 5:5–11 (1971).Google Scholar
  30. 30.
    R. N. Rai, and K. B. R. Varma. Phase diagram and dielectric studies of binary organic materials. Mater. Lett. 44(5):284–293 (2000).CrossRefGoogle Scholar
  31. 31.
    U. S. Rai and S. George. Some thermochemical studies on binary faceted organic eutectics and 1:1 molecular complexes. J. Therm. Anal. 46(6):1809–1820 (1996).CrossRefGoogle Scholar
  32. 32.
    N. R. Jagannathan and C. N. R. Rao. A 13C NMR spectroscopic study of the phase transitions of alkane dicarboxylic acids in the solid state. Chem. Phys. Lett. 140(1):46–50 (1987).CrossRefGoogle Scholar
  33. 33.
    S. J. Nehm, B. Rodriguez-Spong, and N. Rodriguez-Hornedo. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst. Growth Des. 6(2):592–600 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Daniel P. McNamara
    • 1
    Email author
  • Scott L. Childs
    • 2
    • 3
  • Jennifer Giordano
    • 1
  • Anthony Iarriccio
    • 1
  • James Cassidy
    • 1
  • Manjunath S. Shet
    • 1
  • Richard Mannion
    • 1
  • Ed O'Donnell
    • 1
  • Aeri Park
    • 2
  1. 1.Purdue Pharma L. P.ArdsleyUSA
  2. 2.SSCI Inc.West LafayetteUSA
  3. 3.Design Science ResearchAtlantaUSA

Personalised recommendations