Skip to main content

Advertisement

Log in

Enhanced Transscleral Iontophoretic Transport with Ion-Exchange Membrane

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Transscleral iontophoresis has been recently re-examined for drug delivery to the back of the eye. In conventional iontophoresis, due to the relatively high electromobility of the endogenous competing ions (counterions) relative to that of the drug ion in the tissue barrier, the efficiency of iontophoretic drug delivery is generally low. The objective of the present study was to examine ion-exchange membrane-enhanced transscleral iontophoretic transport in which the ion-exchange membrane in series with the sclera can hinder the transport of the competing counterions and selectively allow the transport of the permeant across the sclera.

Methods

The physical properties of the Ionac ion-exchange membrane and excised rabbit sclera were determined in equilibrium uptake experiments and in passive and iontophoretic transport experiments with salicylate, tetraethylammonium, urea, and mannitol. Transscleral experiments with the ion-exchange membrane were conducted with salicylate and excised rabbit sclera in vitro. The contribution of electroosmosis to electrotransport during transscleral iontophoresis was assessed with urea and mannitol.

Results

The ion-exchange membrane is highly positively charged and has a small effective pore size. The sclera is relatively porous with a large effective pore size and low pore tortuosity. The sclera is also net negatively charged but this does not significantly affect the transport of small ions. A three-fold steady-state transscleral flux enhancement of salicylate was observed in ion-exchange membrane-enhanced iontophoresis over conventional transscleral iontophoresis without the membrane. Such enhancement was relatively independent of the applied electric current density and the thickness of the studied ion-exchange membrane assembly. Although the ion-exchange membrane altered transscleral electroosmosis, the contribution of electroosmosis to electrotransport was not significant.

Conclusions

The present study has demonstrated the potential of ion-exchange membranes for enhancing iontophoretic transport and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. B. Kasting. Theoretical models for iontophoretic delivery. Adv. Drug Deliv. Rev. 9:177–199 (1992).

    Article  CAS  Google Scholar 

  2. L. Hughes and D. M. Maurice. A fresh look at iontophoresis. Arch. Ophthalmol. 102:1825–1829 (1984).

    CAS  PubMed  Google Scholar 

  3. S. H. Yoo, D. Dursun, S. Dubovy, D. Miller, E. Alfonso, R. K. Forster, F. F. Behar-Cohen, and J. M. Parel. Iontophoresis for the treatment of paecilomyces keratitis. Cornea 21:131–132 (2002).

    Article  PubMed  Google Scholar 

  4. F. F. Behar-Cohen, J. M. Parel, Y. Pouliquen, B. Thillaye-Goldenberg, O. Goureau, S. Heydolph, Y. Courtois, and Y. De Kozak. Iontophoresis of dexamethasone in the treatment of endotoxin-induced-uveitis in rats. Exp. Eye Res. 65:533–545 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. F. F. Behar-Cohen, A. El Aouni, S. Gautier, G. David, J. Davis, P. Chapon, and J. M. Parel. Transscleral coulomb-controlled iontophoresis of methylprednisolone into the rabbit eye: influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels. Exp. Eye Res. 74:51–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. M. Voigt, M. Kralinger, G. Kieselbach, P. Chapon, S. Anagnoste, B. Hayden, and J. M. Parel. Ocular aspirin distribution: a comparison of intravenous, topical, and coulomb-controlled iontophoresis administration. Invest. Ophthalmol. Vis Sci. 43:3299–3306 (2002).

    PubMed  Google Scholar 

  7. T. M. Parkinson, E. Ferguson, S. Febbraro, A. Bakhtyari, M. King, and M. Mundasad. Tolerance of ocular iontophoresis in healthy volunteers. J. Ocular Pharmacol. Ther. 19:145–151 (2003).

    Article  CAS  Google Scholar 

  8. J. B. Phipps and J. R. Gyory. Transdermal ion migration. Adv. Drug Deliv. Rev. 9:137–176 (1992).

    Article  CAS  Google Scholar 

  9. B. H. Sage. Iontophoresis. In: E. W. Smith and H. I. Maibach (eds.), Percutaneous Penetration Enhancers, CRC, Boca Raton, 1995, Ch 15.1.

    Google Scholar 

  10. M. B. Delgado-Charro and R. H. Guy. Iontophoresis of peptides. In: B. Berner and S. M. Dinh (eds.), Electronically Controlled Drug Delivery, CRC, Boca Raton, 1998, Ch 7.

    Google Scholar 

  11. A. K. Banga and Y. W. Chien. Iontophoretic delivery of drugs: fundamentals, developments, and biomedical applications. J. Control. Release 7:1–24 (1988).

    Article  CAS  Google Scholar 

  12. S. P. Schwendeman, G. L. Amidon, V. Labhasetwar, and R. J. Levy. Modulated drug release using iontophoresis through heterogeneous cation-exchange membranes. 2. Influence of cation-exchanger content on membrane resistance and characteristic times. J. Pharm. Sci. 83:1482–1494 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. S. A. Molokhia, Y. Zhang, W. I. Higuchi, H. S. White, and S. K. Li. Iontophoretic transport across a multiple membrane system. In preparation.

  14. W. M. Deen. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33:1409–1425 (1987).

    Article  CAS  Google Scholar 

  15. S. K. Li, Y. Zhang, H. Zhu, W. I. Higuchi, and H. S. White. Influence of asymmetric donor-receiver ion concentration upon transscleral iontophoretic transport. J. Pharm. Sci. 94:847–860 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. K. D. Peck, A. H. Ghanem, and W. I. Higuchi. Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharm. Res. 11:1306–1314 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. S. K. Li, A. H. Ghanem, K. D. Peck, and W. I. Higuchi. Iontophoretic transport across a synthetic membrane and human epidermal membrane: a study of the effects of permeant charge. J. Pharm. Sci. 86:680–689 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. K. D. Peck, V. Srinivasan, S. K. Li, W. I. Higuchi, and A. H. Ghanem. Quantitative description of the effect of molecular size upon electroosmotic flux enhancement during iontophoresis for a synthetic membrane and human epidermal membrane. J. Pharm. Sci. 85:781–788 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. D. H. Geroski and H. F. Edelhauser. Transscleral drug delivery for posterior segment disease. Adv. Drug Deliv. Rev. 52:37–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. N. He, K. S. Warner, W. I. Higuchi, and S. K. Li. Model analysis of flux enhancement across hairless mouse skin induced by chemical permeation enhancers. Int. J. Pharm. 297:9–21 (2005).

    CAS  PubMed  Google Scholar 

  21. S. K. Li, S. A. Molokhia, and E. K. Jeong. Assessment of subconjunctival delivery with model ionic permeants and magnetic resonance imaging. Pharm. Res. 21:2175–2184 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. K. M. Hamalainen, K. Kananen, S. Auriola, K. Kontturi, and A. Urtti. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest. Ophthalmol. Vis Sci. 38:627–634 (1997).

    CAS  PubMed  Google Scholar 

  23. D. M. Maurice and J. Polgar. Diffusion across the sclera. Exp. Eye Res. 25:577–582 (1977).

    Article  CAS  PubMed  Google Scholar 

  24. T. W. Olsen, H. F. Edelhauser, J. I. Lim and D. H. Geroski. Human scleral permeability. Effects of age, cryotherapy, transscleral diode laser, and surgical thinning. Invest. Ophthalmol. Vis Sci. 36:1893–1903 (1995).

    CAS  PubMed  Google Scholar 

  25. S. M. Sims, W. I. Higuchi, V. Srinivasan, and K. D. Peck. Ionic partition coefficients and electroosmotic flow in cylindrical pores: comparison of the predictions of the Poisson–Boltzmann equation with experiment. J. Colloid Interface Sci. 155:210–220 (1993).

    Article  CAS  Google Scholar 

  26. G. B. Kasting and J. C. Keister. Application of electro-diffusion theory for a homogeneous membrane to iontophoretic transport through skin. J. Control. Release 8:195–210 (1989).

    Article  CAS  Google Scholar 

  27. M. R. Prausnitz and J. S. Noonan. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci. 87:1479–1488 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. S. K. Li, A. H. Ghanem, K. D. Peck, and W. I. Higuchi. Pore induction in human epidermal membrane during low to moderate voltage iontophoresis: a study using AC iontophoresis. J. Pharm. Sci. 88:419–427 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. D. F. Untereker, J. B. Phipps, P. T. Cahalan, and K. R. Brennen. Iontophoresis electrode. US Patent 5,395,310 (1995).

Download references

Acknowledgments

This research was supported in part by NIH Grant EY015181. The authors thank Dr. Rajan P. Kochambilli for his help in the preparation of the experiments, Matthew S. Hastings and Dr. David J. Miller at Aciont Inc. (Salt Lake City, UT), Dr. Yanhui Zhang and Dr. Henry S. White for helpful discussion, Dr. Aniko Szabo and Dr. Lisa M. Pappas for their help in statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kevin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S.K., Zhu, H. & Higuchi, W.I. Enhanced Transscleral Iontophoretic Transport with Ion-Exchange Membrane. Pharm Res 23, 1857–1867 (2006). https://doi.org/10.1007/s11095-006-9010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9010-9

Key Words

Navigation