Purpose
The goals of this study were as follows: 1) to evaluate the efficacy of different polyethylenimine (PEI) structures for siRNA delivery in a model system, and 2) to determine the biophysical and structural characteristics of PEI that relate to siRNA delivery.
Materials and Methods
Biophysical characterization (effective diameter and zeta potential), cytotoxicities, relative binding affinities and in vitro transfection efficiencies were determined using nanocomplexes formed from PEI's of 800, 25,000, (both branched) and 22,000 (linear) molecular weights at varying N:P ratios and siRNA concentrations. The HR5-CL11 cell line stably expressing luciferase was used as a model system in vitro.
Results
Successful siRNA delivery was observed within a very narrow window of conditions, and only with the 25,000 branched PEI at an N:P ratio of 6:1 and 8:1 and with 200 nM siRNA. While the zeta potential and size of PEI:siRNA complexes correlated to transfection efficacy in some cases, complex stability may also affect transfection efficacy.
Conclusions
The ability of PEI to transfer functionally active siRNA to cells in culture is surprisingly dependent on its biophysical and structural characteristics when compared to its relative success and ease of use for DNA delivery.
Similar content being viewed by others
Abbreviations
- HEPES:
-
4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid
- PEI:
-
polyethylenimine
- siRNA:
-
small interfering RNA
- 22 K L-PEI:
-
22,000 molecular weight linear PEI
- 25 K B-PEI:
-
25,000 molecular weight branched PEI
- 800 B-PEI:
-
800 molecular weight branched PEI
References
A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811 (1998).
S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498 (2001).
S. M. Hammond, E. Bernstein, D. Beach, and G. J. Hannon. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophilia cells. Nature 404:293–296 (2000).
P. Zamore, T. Tuschl, P. Sharp, and D. Bartel. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33 (2000).
T. R. Brummelkamp, R. Bernards, and R. Agami. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553 (2002).
G. Sui, C. Soohoo, E. B. Affar, F. Gay, Y. Shi, W.C. Forrester, and Y. Shi. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99:5515–5520 (2002).
C. R. Paul, P. D. Good, I. Winer, and D. R. Engelke. Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20:505–508 (2002).
D. Gou, N. Jin, and L. Liu. Gene silencing in mammalian cells by PCR-based short hairpin RNA. FEBS Lett. 539:113–118 (2003).
S. Q. Harper and B. L. Davidson. Plasmid-based RNA interference: construction of small-hairpin RNA expression vectors. Methods Mol. Biol. 309:219–236 (2005).
Y. Guo, J. Liu, Y.-H. Li, T.-B. Song, J. Wu, C.-X. Zheng, and C.-F. Xue. Effect of vector-expressed shRNAs on hTERT expression. World J. Gastroenterol. 11:2912–2915 (2005).
N. Miyagishi and K. Taira. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 20:497–500 (2002).
N. S. Lee, T. Dohjima, G. Bauer, H. Li, M.-J. Li, A. Ehsani, P. Salvaterra, and J. Rossi. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20:500–505 (2002).
O. Boussif, P. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J.-P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92:7297–7301 (1995).
B. Urban-Klein, S. Werth, S. Abuharbeid, F. Czubayko, and A. Aigner. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI) complexed siRNA in vivo. Gene Ther. 12:461–466 (2005).
M. L. Read, S. Singh, Z. Ahmed, M. Stevenson, S. S. Briggs, D. Oupicky, L. B. Barrett, R. Spice, M. Kendall, M. Berry, J. A. Preece, A. Logan, and L. W. Seymour. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33:e86 (2005).
Z. Hassani, G. F. Lemkine, P. Erbacher, K. Palmier, G. Alfama, C. Giovannangeli, J.-P. Behr, and B. A. Demeneix. Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J. Gene Med. 7:198–207 (2005).
M. Thomas, J. J. Lu, Q. Ge, C. Zhang, J. Chen, and A. M. Klibanov. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. USA 102:5679–5684 (2005).
T. Merdan, K. Kunath, D. Fischer, J. Kopecek, and T. Kissel. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharm. Res. 19:140–146 (2002).
A. Aigner, D. Fischer, T. Merdan, C. Brus, T. Kissel, and F. Czubayko. Delivery of unmodified bioactive ribozymes by an RNA-stabilizing polyethylenimine (LMW-PEI) efficiently down-regulates gene expression. Gene Ther. 9:1700–1707 (2002).
S. Dheur, N. Dias, A. van Aerschot, P. Herdewijn, T. Bettinger, J.-S. Rémy, C. Hélène, and E. T. Saison-Behmoaras. Polyethylenimine but not cationic lipid improves antisense activity of 3′-capped phosphodiester oligonucleotides. Antisense Nucleic Acid Drug Dev. 9:515–525 (1999).
J.-P. Behr. The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36 (1997).
A. Akinc, M. Thomas, A. M. Klibanov, and R. Langer. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7:657–663 (2005).
R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004).
W. T. Godbey, K. K. Wu, and A. G. Mikos. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res. 45:268–275 (1999).
C.-H. Lee, Y.-H. Ni, C.-C. Chen, C.-K. Chou, and F.-H. Chang. Synergistic effect of polyethylenimine and cationic liposomes in nucleic acid delivery to human cancer cells. Biochim. Biophys. Acta 1611:55–62 (2003).
S. Choosakoonkriang, B. A. Lobo, G. S. Koe, J. G. Koe, and C. R. Middaugh. Biophysical characterization of PEI/DNA complexes. J. Pharm. Sci. 92:1710–1722 (2003).
B. Brissault, A. Kichler, C. Guis, C. Leborgne, O. Danos, and H. Cheradame. Synthesis of linear polyethylenimine derivatives for DNA delivery. Bioconjug. Chem. 14:581–587 (2003).
S. Ferrari, E. Moro, A. Pettenazo, J. P. Behr, F. Zacchello, and M. Scarpa. ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther. 2:1100–1106 (1997).
D. Goula, C. Benoist, S. Mantero, G. Merlo, G. Levi, and B. A. Demeneix. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5:1291–1295 (1998).
D. Goula, J. S. Remy, P. Erbacher, M. Wasowicz, G. Levi, B. Abdallah, and B. A. Demeneix. Size, diffusibility, and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther. 5:712–717 (1998).
S.-M. Zou, P. Erbacher, J.-S. Remy, and J.-P. Behr. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J. Gene Med. 2:128–134 (2000).
G. F. Lemkine and B. A. Demeneix. Polyethylenimines for in vivo gene delivery. Curr. Opin. Mol. Ther. 3:178–182 (2001).
D. Putnam, C. A. Gentry, D. W. Pack, and R. Langer. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA 98:1200–1205 (2001).
A. N. Zelikin, E. S. Trukhanova, D. A. Putnam, V. A. Izumrudov, and A. A. Litmanovich. Selectivity of binding of polycations to DNA and synthetic polyanions. Polymer Preprints 44:519–520 (2003).
N. E. Bishop. An update on non-clathrin-coated endocytosis. Rev. Med. Virol. 7:199–209 (1997).
U. Rungsardthong, T. Ehtezazi, L. Bailey, S. P. Armes, M. C. Garnett, and S. Stolnik. Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems. Biomacromolecules 4:683–690 (2003).
M. Gossen, S. Freundlieb, G. Bender, G. Müller, W. Hillen, and H. Bujard. Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769 (1995).
Z. Ma, J. Li, F. He, A. Wilson, B. Pitt, and S. Li. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun. 330:755–759 (2005).
V. Hornung, M. Guenthner-Biller, C. Bourquin, A. Ablasser, M. Schlee, S. Uematsu, A. Noronha, M. Manoharan, S. Akira, A. de Fougerolles, S. Endres, and G. Hartmann. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11:263–270 (2005).
A. D. Judge, V. Sood, J. R. Shaw, D. Fang, K. McClintock, and I. MacLachlan. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23:457–462 (2005).
M. Sioud. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol. 348:1079–1090 (2005).
Y. Federov, A. King, E. Anderson, J. Karpilow, D. Ilsley, W. Marshall, and A. Khvorova. Different delivery methods—different expression profiles. Nat. Methods 2:241–242 (2005).
R. Smolarczyk, T. Cichoń, A. Sochanik, and S. Szala. Negligible induction of IFN-γ, IL-12, and TNF-α by DNA-PEI 750 kDa/albumin complexes. Cytokine 29:283–287 (2005).
K. Kunath, A. von Harpe, D. Fischer, H. Petersen, U. Bickel, K. Voigt, and T. Kissel. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release 89:113–125 (2003).
E. Ramsay, J. Hadgraft, J. Birchall, and M. Gumbleton. Examination of the biophysical interaction between plasmid DNA and the polycations, polylysine and polyornithine, as a basis for their differential gene transfection in-vitro. Int. J. Pharm. 210:97–107 (2000).
D. Fischer, T. Bieber, Y. Li, H.-P. Elsässer, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16:1273–1279 (1999).
S. M. Moghimi, P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. 11:990–995 (2005).
D. Wang, A. S. Narang, M. Kotb, A. O. Gaber, D. D. Miller, S. W. Kim, and R. I. Mahato. Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules 3:1197–1207 (2002).
Acknowledgments
Research described in this article was supported in part by Philip Morris USA Inc. and Philip Morris Internationaland in part by the Ladies Auxiliary to the Veterans of Foreign Wars Cancer Research Fellowship. The expert help and assistance of Mr. Peter Zawaneh is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Richards Grayson, A.C., Doody, A.M. & Putnam, D. Biophysical and Structural Characterization of Polyethylenimine-Mediated siRNA Delivery in Vitro . Pharm Res 23, 1868–1876 (2006). https://doi.org/10.1007/s11095-006-9009-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11095-006-9009-2