Skip to main content
Log in

Time-Dependence of Molecular Mobility during Structural Relaxation and its Impact on Organic Amorphous Solids: An Investigation Based on a Calorimetric Approach

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To develop a calorimetry-based model for estimating the time-dependence of molecular mobility during the isothermal relaxation of amorphous organic compounds below their glass transition temperature (T g).

Methods

The time-dependent enthalpy relaxation times of amorphous sorbitol, indomethacin, trehalose and sucrose were estimated based on the nonlinear Adam‐Gibbs equation. Fragility was determined from the scanning rate dependence of T g. Time evolution of the fictive temperature was determined from T g, the heat capacity of the amorphous and crystalline forms, and from the enthalpy relaxation data.

Results

Relaxation time changes significantly upon annealing for all compounds studied. The magnitude of the increase in relaxation time does not depend on any one parameter but on four parameters: T g, fragility, and the crystal–liquid and glass–liquid heat capacity differences. The obtained mobility data for indomethacin and sucrose, both stored at T g−16 K, correlated much better with their different crystallization tendencies than did the Kohlrausch‐Williams‐Watts (KWW) equation.

Conclusions

The observed changes in relaxation time help explain and address the limitations of the KWW approach. Due consideration of the time-dependence of molecular mobility upon storage is a key element for improving the understanding necessary for stabilizing amorphous formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Aso, S. Yoshioka, and S. Kojima. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. J. Pharm. Sci. 93:384–391 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. V. Andronis, M. Yoshioka, and G. Zografi. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J. Pharm. Sci. 86:346–351 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. Y. S. Guo, S. R. Bryn, and G. Zografi. Physical characteristics and chemical degradation of amorphous quinapril hydrochloride. J. Pharm. Sci. 89:128–143 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. S. R. Byrn, W. Xu, and A. W. Newman. Chemical reactivity in solid-state pharmaceuticals: formulation implications. Adv. Drug Deliv. Rev. 48:115–136 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. M. J. Pikal and S. Shah. The collapse temperature in freeze-drying—dependence on measurement methodology and rate of water removal from the glassy phase. J. Phys. Chem. 62:165–186 (1990).

    CAS  Google Scholar 

  6. K. Kawakami and M. J. Pikal. Calorimetric investigation of the structural relaxation of amorphous materials: evaluating validity of the methodologies. J. Pharm. Sci. 94:948–965 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. B. C. Hancock and S. L. Shamblin. Molecular mobility of amorphous pharmaceuticals determined using differential scanning calorimetry. Thermochim. Acta 380:95–107 (2001).

    CAS  Google Scholar 

  8. J. S. Liu, D. R. Rigsbee, C. Stotz, and M. J. Pikal. Dynamics of pharmaceutical amorphous solids: the study of enthalpy relaxation by isothermal microcalorimetry. J. Pharm. Sci. 91:1853–1862 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. K. Kawakami and Y. Ida. Direct observation of the enthalpy relaxation and the recovery processes of maltose-based amorphous formulation by isothermal microcalorimetry. Pharm. Res. 20:1430–1436 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. S. P. Duddu, G. Z. Zhang, and P. R. DalMonte. The relationship between protein aggregation and molecular mobility below the glass transition temperature of lyophilized formulations containing a monoclonal antibody. Pharm. Res. 14:596–600 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. V. Andronis and G. Zografi. The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm. Res. 15:835–842 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. B. C. Hancock, S. L. Shamblin, and G. Zografi. Molecular mobility of amorphous pharmaceutical solids below their glass-transition temperatures. Pharm. Res. 12:799–806 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. V. Andronis and G. Zografi. Molecular mobility of supercooled amorphous indomethacin, determined by dynamic mechanical analysis. Pharm. Res. 14:410–414 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. S. Yoshioka, Y. Aso, S. Kojima, S. Sakurai, T. Fujiwara, and H. Akutsu. Molecular mobility of protein in lyophilized formulations linked to the molecular mobility of polymer excipients, as determined by high resolution C-13 solid-state NMR. Pharm. Res. 16:1621–1625 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. S. Yoshioka, Y. Aso, and S. Kojima. Determination of molecular mobility of lyophilized bovine serum albumin and gamma-globulin by solid-state H-1 NMR and relation to aggregation-susceptibility. Pharm. Res. 13:926–930 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. S. L. Shamblin, B. C. Hancock, Y. Dupuis, and M. J. Pikal. Interpretation of relaxation time constants for amorphous pharmaceutical systems. J. Pharm. Sci. 89:417–427 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. G. Adam and J. H. Gibbs. On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43:139–146 (1965).

    Article  CAS  Google Scholar 

  18. A. Q. Tool and C. G. Eichlin. Variations caused in the heating curves of glass by heat treatment. J. Am. Ceram. Soc. 14:276–308 (1931).

    Article  CAS  Google Scholar 

  19. I. M. Hodge. Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169:211–266 (1994).

    Article  CAS  Google Scholar 

  20. G. W. Scherer. Use of the Adam–Gibbs equation in the analysis of structural relaxation. J. Am. Ceram. Soc. 67:504–511 (1984).

    Article  CAS  Google Scholar 

  21. D. J. Plazek and J. H. Magill. Physical properties of aromatic hydrocarbons. I. Viscoelastic behavior of 1.3.5-tri-alpha-naphthyl benzene. J. Chem. Phys. 45:3038–3050 (1966).

    Article  CAS  Google Scholar 

  22. M. A. Debolt, A. J. Easteal, P. B. Macedo, and C. T. Moynihan. Analysis of structural relaxation in glass using rate heating data. J. Am. Ceram. Soc. 59:16–21 (1976).

    Article  CAS  Google Scholar 

  23. C. T. Moynihan, A. J. Easteal, J. Wilder, and J. Tucker. Dependence of glass-transition temperature on heating and cooling rate. J. Phys. Chem. 78:2673–2677 (1974).

    Article  CAS  Google Scholar 

  24. B. C. Hancock, C. R. Dalton, M. J. Pikal, and S. L. Shamblin. A pragmatic test of a simple calorimetric method for determining the fragility of some amorphous pharmaceutical materials. Pharm. Res. 15:762–767 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. R. Bohmer and C. A. Angell. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-as-Se supercooled liquids. Phys. Rev. B 45:10091–10094 (1992).

    Article  Google Scholar 

  26. R. Bohmer, K. L. Ngai, C. A. Angell, and D. J. Plazek. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99:4201–4209 (1993).

    Article  Google Scholar 

  27. B. C. Hancock and G. Zografi. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 86:1–12 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. K. J. Crowley and G. Zografi. The use of thermal methods for predicting glass-former fragility. Thermochim. Acta 380:79–93 (2001).

    Article  CAS  Google Scholar 

  29. S. L. Shamblin, X. L. Tang, L. Q. Chang, B. C. Hancock, and M. J. Pikal. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J. Phys. Chem. B 103:4113–4121 (1999).

    Article  CAS  Google Scholar 

  30. S. L. Shamblin and G. Zografi. Enthalpy relaxation in binary amorphous mixtures containing sucrose. Pharm. Res. 15:1828–1834 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. M. Goldstein. Viscous-liquids and glass-transition. 5. Sources of excess specific-heat of liquid. J. Chem. Phys. 64:4767–4774 (1976).

    Article  CAS  Google Scholar 

  32. I. M. Hodge. Strong and fragile liquids—a brief critique. J. Non-Cryst. Solids 202:164–172 (1996).

    Article  CAS  Google Scholar 

  33. Y. Aso, S. Yoshioka, and S. Kojima. Explanation of the crystallization rate of amorphous nifedipine and phenobarbital from their molecular mobility as measured by C-13 nuclear magnetic resonance relaxation time and the relaxation time obtained from the heating rate dependence of the glass transition temperature. J. Pharm. Sci. 90:798–806 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. D. L. Zhou, G. G. Z. Zhang, D. Law, D. J. W. Grant, and E. A. Schmitt. Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J. Pharm. Sci. 91:1863–1872 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. J. J. Li, Y. S. Guo, and G. Zografi. The solid-state stability of amorphous quinapril in the presence of beta-cyclodextrins. J. Pharm. Sci. 91:229–243 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. T. Matsumoto and G. Zografi. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinylacetate) in relation to indomethacin crystallization. Pharm. Res. 16:1722–1728 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. X. M. Zeng, G. P. Martin, and C. Marriott. Effects of molecular weight of polyvinylpyrrolidone on the glass transition and crystallization of co-lyophilized sucrose. Int. J. Pharm. 218:63–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. Y. Hu. Solid-state investigation of crystalline and amorphous lisinopril and stabilization of amorphous lisinopril and quinapril hydrochloride. Industrial and Physical Pharmacy, Ph. D., Purdue University, West Lafayette, 2001.

  39. L. R. Hilden and K. R. Morris. Prediction of the relaxation behavior of amorphous pharmaceutical compounds. I. Master curves concept and practice. J. Pharm. Sci. 92:1464–1472 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. V. K. Kakumanu and A. K. Bansal. Enthalpy relaxation studies of celecoxib amorphous mixtures. Pharm. Res. 19:1873–1878 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. G. Williams. Molecular-motion in glass-forming systems. J. Non-Cryst. Solids 131:1–12 (1991).

    Article  Google Scholar 

  42. R. Surana, A. Pyne, and R. Suryanarayanan. Effect of preparation method on physical properties of amorphous trehalose. Pharm. Res. 21:1167–1176 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study is financially supported by The Purdue‐Michigan Program on the Chemical and Physical Stability of Pharmaceutical Solids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Pinal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, C., Chamarthy, S.P. & Pinal, R. Time-Dependence of Molecular Mobility during Structural Relaxation and its Impact on Organic Amorphous Solids: An Investigation Based on a Calorimetric Approach. Pharm Res 23, 1906–1917 (2006). https://doi.org/10.1007/s11095-006-9008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9008-3

Key words

Navigation