Abstract
RNA interference (RNAi) is a post-transcriptional gene-silencing phenomenon that is triggered by double-stranded RNA (dsRNA). Since many diseases are associated with the inappropriate production of specific proteins, attempts are being made to exploit RNAi in a clinical settings. However, before RNAi can be exploited as therapeutically, several obstacles must be overcome. For example, small interfering RNA (siRNA) is unstable in the blood stream so any effects of injected siRNA are only transient. Accordingly, methods must be developed to prolong its activity. Furthermore, the efficient and safe delivery of siRNA into target tissues and cells is critical for successful therapy. Any useful delivery method should be designed to target siRNA to specific cells and to promote gene-silencing activity once the siRNA is inside the cells. Recent chemical modifications of siRNA have overcome problems associated with the instability of siRNA, and various ligands, including glycosylated molecules, peptides, proteins, antibodies and engineered antibody fragments, appear to be very useful or have considerable potential for the targeted delivery of siRNA. The use of such ligands improves the efficiency, specificity and, as a consequence, the safety of the corresponding delivery systems.
Similar content being viewed by others
References
C. D. Novina and P. A. Sharp. The RNAi revolution. Nature 430:161–164 (2004).
D. M. Dykxhoorn and J. Lieberman. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 56:401–423 (2005).
A. P. McCaffrey, L. Meuse, T. T. Pham, D. S. Conklin, G. J. Hannon, and M. A. Kay. RNA interference in adult mice. Nature 418:38–39 (2002).
D. L. Lewis and J. A. Wolff. Delivery of siRNA and siRNA expression constructs to adult mammals by hydrodynamic intravascular injection. Methods Enzymol. 392:336–350 (2005).
D. L. Lewis, J. E. Hagstorm, A. G. Loomis, J. A. Wolff, and H. Herweijer. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32:107–108 (2002).
Z. Paroo and D. R. Corey. Challenges for RNAi in vivo. Trends Biotechnol. 22:390–394 (2004).
D. A. Braasch, Z. Paroo, A. Constantinescu, G. Ren, O. K. Oz, R. P. Mason, and D. R. Corey. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 14:1139–1143 (2004).
D. A. Braasch, S. Jensen, Y. Liu, K. Kaur, K. Arar, M. A. White, and D. R. Corey. RNA interference in mammalian cells by chemically modified RNA. Biochemistry 42:7967–7975 (2003).
Y. L. Chiu and T. M. Rana. siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048 (2003).
M. Amarzguioui, T. Holen, E. Babaie, and H. Prydz. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31:589–595 (2003).
F. Czauderna, M. Fechtner, S. Dames, H. Aygun, A. Klippel, G. J. Pronk, K. Giese, and J. Kaufmann. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31:2705–2716 (2003).
T. P. Prakash, C. R. Allerson, P. Dande, T. A. Vickers, N. Sioufi, R. Jarres, B. F. Baher, E. E. Swayze, R. H. Griffey, and B. Bhar. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48:4247–4253 (2005).
J. Elmen, H. Thonberg, K. Ljungberg, M. Frieden, M. Westergaard, Y. Xu, B. Wahren, Z. Liang, H. Orum, T. Koch, and C. Wahlestedt. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 33:439–447 (2005).
A. H. Hall, J. Wan, E. E. Shaughnessy, B. R. Shaw, and K. A. Alexander. RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res. 32:5991–6000 (2004).
Y. Chiu, A. Ali, C. Chu, H. Cao, and T. Rana. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol. 11:1165–1175 (2004).
C. Rudolph, C. Plank, J. Lausier, U. Schillinger, R. H. Muller, and J. Rosenecker. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. 278:11411–11418 (2003).
T. S. Levchenko, R. Rammohan, N, Volodina, and V. P. Torchilin VP. Tat peptide-mediated intracellular delivery of liposomes. Methods Enzymol. 372:339–349 (2003).
S. Fawell, J. Seery, Y. Daikh, C. Moore, L. L. Chen, B. Pepinsky, and J. Barsoum. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91:664–668 (1994).
S. R. Schwarze, A. Ho, A. Vocero-Akbani, and S. F. Dowdy. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572 (1999).
J. Soutschek, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178 (2004).
T. Akasaka, K. Matsuura, N. Emi, and K. Kobayashi. Conjugation of plasmid DNAs with lactose via diazocoupling enhances resistance to restriction enzymes and acquires binding affinity to galactose-specific lectin. Biochem. Biophys. Res. Commun. 260:323–328 (1999).
C. Neves, G. Byk, V. Escriou, F. Bussone, D. Scherman, and P. Wils. Novel method for covalent fluorescent labeling of plasmid DNA that maintains structural integrity of the plasmid. Bioconjug. Chem. 11:51–55 (2000).
T. Nagasaki, T. Myohoji, T. Tachibana, S. Futaki, and S. Tamagaki. Can nuclear localization signals enhance nuclear localization of plasmid DNA? Bioconjug. Chem. 14:282–286 (2003).
Y. Ikeda, S. Kawahara, K. Yoshinari, S. Fujita, and K. Taira. Specific 3′-terminal modification of DNA with a novel nucleoside analogue that allows a covalent linkage of a nuclear localization signal and enhancement of DNA stability. Chembiochem 6:297–303 (2005).
P. S. Eder, R. J. DeVine, J. M. Dagle, and J. A. Walder. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res. Dev. 1:141–151 (1991).
M. A. Zanta, P. Belguise-Valladier, and J. P. Behr. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 96:91–96 (1999).
M. Taki, Y. Kato, M. Miyagishi, Y. Takagi, and K. Taira. Small-interfering-RNA expression in cells based on an efficiently constructed dumbbell-shaped DNA. Angew. Chem., Int. Ed. Engl. 43:3160–3163 (2004).
M. Hashida, M. Nishikawa, F. Yamashita, and Y. Takakura. Cell-specific delivery of genes with glycosylated carriers. Adv. Drug. Deliv. Rev. 52:187–196 (2001).
S. Kawakami, S. Fumoto, M. Nishikawa, F. Yamashita, and M. Hashida. In vivo gene delivery to the liver using novel galactosylated cationic liposomes. Pharm. Res. 17:306–313 (2000).
J. C. Perales, T. Ferkol, H. Beegen, O. D. Ratnoff, and R. W. Hanson. Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl. Acad. Sci. USA 91:4086–4090 (1994).
J. S. Remy, A. Kichler, V. Mordvinov, F. Schuber, and J. P. Behr. Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc. Natl. Acad. Sci. USA 92:1744–1748 (1995).
M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, and K. Kataoka. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127:1624–1625 (2005).
Y. Hattori, S. Kawakami, S. Suzuki, F. Yamashita, and M. Hashida. Enhancement of immune responses by DNA vaccination through targeted gene delivery using mannosylated cationic liposome formulations following intravenous administration in mice. Biochem. Biophys. Res. Commun. 317:992–999 (2004).
S. Kawakami, Y. Hattori, Y. Lu, Y. Higuchi, F. Yamashita, and M. Hashida. Effect of cationic charge on receptor-mediated transfection using mannosylated cationic liposome/plasmid DNA complexes following the intravenous administration in mice. Pharmazie 59:405–408 (2004).
P. Erbacher, M. T. Bousser, J. Raimond, M. Monsigny, P. Midoux, and A. C. Roche. Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages. Hum. Gene Ther. 7:721–729 (1996).
J. F. Ross, P. K. Chaudhuri, and M. Ratnam. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73:2432–2443 (1994).
S. Wang, R. J. Lee, G. Cauchon, D. G. Gorenstein, and P. S. Low. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc. Natl. Acad. Sci. USA 92:3318–3322 (1995).
J. J. Turek, C. P. Leamon, and P. S. Low. Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J. Cell Sci. 106:423–430 (1993).
S. Hwa Kim, J. Hoon Jeong, K. Chul Cho, S. Wan Kim, and T. Gwan Park. Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J. Control. Release 104:223–232 (2005).
J. A. Eble. Collagen-binding integrins as pharmaceutical targets. Curr. Pharm. Des. 11:867–880 (2005).
R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004).
P. Aisen. Transferrin receptor 1. Int. J. Biochem. Cell Biol. 36:2137–2143 (2004).
S. Hu-Lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res. 65:8984–8992 (2005).
M. Mammen, S. K. Choi, and G. M. Whitesides. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37:2754–2794 (1998).
G. P. Adams and L. M. Weiner. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23:1147–1157 (2005).
A. Wright and S. L. Morrison. Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 15:26–32 (1997).
R. Niwa, E. Shoji-Hosaka, M. Sakurada, T. Shinkawa, K. Uchida, K. Nakamura, K. Matsushima, R. Ueda, N. Hanai, and K. Shitara. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res. 64:2127–2133 (2004).
P. J. Hudson and C. Souriau. Engineered antibodies. Nat. Med. 9:129–134 (2003).
P. Holliger and P. J. Hudson. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23:1126–1136 (2005).
L. Grosse-Hovest, W. Wick, R. Minoia, M. Weller, H. G. Rammensee, G. Brem, and G. Jung. Supraagonistic, bispecific single-chain antibody purified from the serum of cloned, transgenic cows induces T-cell-mediated killing of glioblastoma cells in vitro and in vivo. Int. J. Cancer 117:1060–1064 (2005).
M. K. Robinson, M. Doss, C. Shaller, D. Narayanan, J. D. Marks, L. P. Adler, D. E. Gonzalez Trotter, and G. P. Adams. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res. 65:1471–1478 (2005).
I. Tomlinson and P. Holliger. Methods for generating multivalent and bispecific antibody fragments. Methods Enzymol. 326:461–479 (2000).
J. L. Casey, M. P. Napier, D. P. King, R. B. Pedley, L. C. Chaplin, N. Weir, L. Skelton, A. J. Green, L. D. Hope-Stone, G. T. Yarranton, and R. H. Begent. Tumour targeting of humanised cross-linked divalent-Fab' antibody fragments: a clinical phase I/II study. Br. J. Cancer 86:1401–1410 (2002).
D. J. King, et al. Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 54:6176–6185 (1994).
P. Holliger, T. Prospero, and G. Winter. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90:6444–6448 (1993).
A. M. Merchant, Z. Zhu, J. Q. Yuan, A. Goddard, C. W. Adams, L. G. Presta, and P. Carter. An efficient route to human bispecific IgG. Nat. Biotechnol. 16:677–681 (1998).
J. Kriangkum, B. Xu, L. P. Nagata, R. E. Fulton, and M. R. Suresh. Bispecific and bifunctional single chain recombinant antibodies. Biomol. Eng. 18:31–40 (2001).
P. Hoffmann, R. Hofmeister, K. Brischwein, C. Brandl, S. Crommer, R. Bargou, C. Itin, N. Prang, and P. A. Baeuerle. Serial killing of tumor cells by cytotoxic T-cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int. J. Cancer 115:98–104 (2005).
J. Schlenzka, T. M. Moehler, S. M. Kipriyanov, M. Kornacker, A. Benner, A. Bahre, M. J. Stassar, H. J. Schafer, M. Little, H. Goldschmidt, and B. Cochlovius. Combined effect of recombinant CD19 × CD16 diabody and thalidomide in a preclinical model of human B cell lymphoma. Anti-cancer Drugs 15:915–919 (2004).
A. P. Chapman. PEGylated antibodies and antibody fragments for improved therapy. Adv. Drug Deliv. Rev. 54:531–545 (2002).
S. Frokjaer and D. E. Otzen. Protein drug stability: a formulation challenge. Nat. Rev. Drug Discov. 4:298–306 (2005).
A. P. Chapman, P. Antoniw, M. Spitali, S. West, S. Stephens, and D. J. King. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol. 17:780–783 (1999).
A. N. Weir, A. Nesbitt, A. P. Chapman, A. G. Popplewell, P. Antoniw, and A. D. Lawson. Formatting antibody fragments to mediate specific therapeutic functions. Biochem. Soc. Trans. 30:512–516 (2002)
S. Kubetzko, C. A. Sarkar, and A. Pluckthun. Protein PEGylation decreases observed target association rates via a dual blocking mechanism. Mol. Pharmacol. 68:1439–1454 (2005).
K. Yang, A. Basu, M. Wang, R. Chintala, M. C. Hsieh, S. Liu, J. Hua, Z. Zhang, J. Zhou, M. Li, H. Phyu, G. Petti, M. Mendez, H. Janjua, P. Peng, C. Longley, V. Borowski, M. Mehlig, and D. Filpula. Tailoring structure-function and pharmacokinetic properties of single-chain Fv proteins by site-specific PEGylation. Protein Eng. 16:761–770 (2003).
H. K. Binz, P. Amstutz, and A. Pluckthun. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23:1257–1268 (2005).
R. C. Ladner, A. K. Sato, J. Gorzelany, and M. de Souza. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov. Today 9:525–529 (2004).
M. Hust and S. Dubel. Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol. Biol. 295:71–96 (2005).
J. Hanes, C. Schaffitzel, A. Knappik, and A. Pluckthun. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18:1287–1292 (2000).
S. Fujita, S. Y. Sawata, R. Yamamoto-Fujita R, Y. Endo, H. Kise, M. Iwakura, and K. Taira. Novel approach for linking genotype to phenotype in vitro by exploiting an extremely strong interaction between RNA and protein. J. Med. Chem. 45:1598–1606 (2002).
J. M. Zhou, S. Fujita, M. Warashina, T. Baba, and K. Taira. A novel strategy by the action of ricin that connects phenotype and genotype without loss of the diversity of libraries. J. Am. Chem. Soc. 124:538–543 (2002).
S. Y. Sawata, E. Suyama, and K. Taira. A system based on specific protein-RNA interactions for analysis of target protein-protein interactions in vitro: successful selection of membrane-bound Bak-Bcl-xL proteins in vitro. Protein Eng. Des. Sel. 17:501–518 (2004).
S. Y. Sawata and K. Taira. Modified peptide selection in vitro by introduction of a protein-RNA interaction. Protein Eng. 16:1115–1124 (2003).
D. S. Wilson, A. D. Keefe, and J. W. Szostak. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. USA 98:3750–3755 (2001).
M. A. Poul, B. Becerril, U. B. Nielsen, P. Morisson, and J. D. Marks. Selection of tumor-specific internalizing human antibodies from phage libraries. J. Mol. Biol. 301:1149–1161 (2000).
B. Liu, F. Conrad, M. R. Cooperberg, D. B. Kirpotin, and J. D. Marks. Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res. 64:704–710 (2004).
J. W. Park, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8:1172–1181 (2002).
X. Li, P. Stuckert, I. Bosch, J. D. Marks, and W. A. Marasco. Single-chain antibody-mediated gene delivery into ErbB2-positive human breast cancer cells. Cancer Gene Ther. 8:555–565 (2001).
M. A. Eaton, et al. A new self-assembling system for targeted gene delivery. Angew. Chem., Int. Ed. Engl. 39:4063–4067 (2000).
Y. Zhang, Y. F. Zhang, J. Bryant, A. Charles, R. J. Boado, and W. M. Pardridge. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10:3667–3677 (2004).
M. C. de Lima, M. T. da Cruz, A. L. Cardoso, S. Simoes, and L. P. de Almeida. Liposomal and viral vectors for gene therapy of the central nervous system. Curr. Drug Targets CNS Neurol Disord. 4:453–465 (2005).
E. Song, P. Zhu, S. K. Lee, D. Chowdhury, S. Kussman, D. M. Dykxhoorn, Y. Feng, D. Palliser, D. B. Weiner, P. Shankar, W. A. Marasco, and J. Lieberman. Antibody-mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23:709–717 (2005).
A. M. Wu and P. D. Senter. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol. 23:1137–1146 (2005).
T. Yokota, D. E. Milenic, M. Whitlow, and J. Schlom. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52:3402–3408 (1992).
K. Fujimori, D. C. Covell, J. E. Fletcher, and J. N. Weinstein. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab)2, and Fab in tumors. Cancer Res. 49:5656–5663 (1989).
G. P. Adams, R. Schier, A. M. McCall, H. H. Simmons, E. M. Horak, R. K. Alpaugh, J. D. Marks, and L. M. Weiner. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 61:4750–4755 (2001).
R. K. Jain and L. T. Baxter. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48:7022–7032 (1988).
R. K. Jain. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 50:814s–819s (1990).
E. N. Kaufman and R. K. Jain. Effect of bivalent interaction upon apparent antibody affinity: experimental confirmation of theory using fluorescence photobleaching and implications for antibody binding assays. Cancer Res. 52:4157–4167 (1992).
U. B. Nielsen, G. P. Adams, L. M. Weiner LM, and Marks J. D. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. 60:6434–6440 (2000).
A. Balmain, J. Gray, and B. Ponder. The genetics and genomics of cancer. Nat. Genet. 33:238–244 (2003).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ikeda, Y., Taira, K. Ligand-Targeted Delivery of Therapeutic siRNA. Pharm Res 23, 1631–1640 (2006). https://doi.org/10.1007/s11095-006-9001-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11095-006-9001-x