Skip to main content

Advertisement

Log in

Ligand-Targeted Delivery of Therapeutic siRNA

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is a post-transcriptional gene-silencing phenomenon that is triggered by double-stranded RNA (dsRNA). Since many diseases are associated with the inappropriate production of specific proteins, attempts are being made to exploit RNAi in a clinical settings. However, before RNAi can be exploited as therapeutically, several obstacles must be overcome. For example, small interfering RNA (siRNA) is unstable in the blood stream so any effects of injected siRNA are only transient. Accordingly, methods must be developed to prolong its activity. Furthermore, the efficient and safe delivery of siRNA into target tissues and cells is critical for successful therapy. Any useful delivery method should be designed to target siRNA to specific cells and to promote gene-silencing activity once the siRNA is inside the cells. Recent chemical modifications of siRNA have overcome problems associated with the instability of siRNA, and various ligands, including glycosylated molecules, peptides, proteins, antibodies and engineered antibody fragments, appear to be very useful or have considerable potential for the targeted delivery of siRNA. The use of such ligands improves the efficiency, specificity and, as a consequence, the safety of the corresponding delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. D. Novina and P. A. Sharp. The RNAi revolution. Nature 430:161–164 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. D. M. Dykxhoorn and J. Lieberman. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 56:401–423 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. A. P. McCaffrey, L. Meuse, T. T. Pham, D. S. Conklin, G. J. Hannon, and M. A. Kay. RNA interference in adult mice. Nature 418:38–39 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. D. L. Lewis and J. A. Wolff. Delivery of siRNA and siRNA expression constructs to adult mammals by hydrodynamic intravascular injection. Methods Enzymol. 392:336–350 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. D. L. Lewis, J. E. Hagstorm, A. G. Loomis, J. A. Wolff, and H. Herweijer. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32:107–108 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. Z. Paroo and D. R. Corey. Challenges for RNAi in vivo. Trends Biotechnol. 22:390–394 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. D. A. Braasch, Z. Paroo, A. Constantinescu, G. Ren, O. K. Oz, R. P. Mason, and D. R. Corey. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 14:1139–1143 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. D. A. Braasch, S. Jensen, Y. Liu, K. Kaur, K. Arar, M. A. White, and D. R. Corey. RNA interference in mammalian cells by chemically modified RNA. Biochemistry 42:7967–7975 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Y. L. Chiu and T. M. Rana. siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. M. Amarzguioui, T. Holen, E. Babaie, and H. Prydz. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31:589–595 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. F. Czauderna, M. Fechtner, S. Dames, H. Aygun, A. Klippel, G. J. Pronk, K. Giese, and J. Kaufmann. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31:2705–2716 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. T. P. Prakash, C. R. Allerson, P. Dande, T. A. Vickers, N. Sioufi, R. Jarres, B. F. Baher, E. E. Swayze, R. H. Griffey, and B. Bhar. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48:4247–4253 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. J. Elmen, H. Thonberg, K. Ljungberg, M. Frieden, M. Westergaard, Y. Xu, B. Wahren, Z. Liang, H. Orum, T. Koch, and C. Wahlestedt. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 33:439–447 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. A. H. Hall, J. Wan, E. E. Shaughnessy, B. R. Shaw, and K. A. Alexander. RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res. 32:5991–6000 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Chiu, A. Ali, C. Chu, H. Cao, and T. Rana. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol. 11:1165–1175 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. C. Rudolph, C. Plank, J. Lausier, U. Schillinger, R. H. Muller, and J. Rosenecker. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. 278:11411–11418 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. T. S. Levchenko, R. Rammohan, N, Volodina, and V. P. Torchilin VP. Tat peptide-mediated intracellular delivery of liposomes. Methods Enzymol. 372:339–349 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. S. Fawell, J. Seery, Y. Daikh, C. Moore, L. L. Chen, B. Pepinsky, and J. Barsoum. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91:664–668 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. S. R. Schwarze, A. Ho, A. Vocero-Akbani, and S. F. Dowdy. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. J. Soutschek, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. T. Akasaka, K. Matsuura, N. Emi, and K. Kobayashi. Conjugation of plasmid DNAs with lactose via diazocoupling enhances resistance to restriction enzymes and acquires binding affinity to galactose-specific lectin. Biochem. Biophys. Res. Commun. 260:323–328 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. C. Neves, G. Byk, V. Escriou, F. Bussone, D. Scherman, and P. Wils. Novel method for covalent fluorescent labeling of plasmid DNA that maintains structural integrity of the plasmid. Bioconjug. Chem. 11:51–55 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. T. Nagasaki, T. Myohoji, T. Tachibana, S. Futaki, and S. Tamagaki. Can nuclear localization signals enhance nuclear localization of plasmid DNA? Bioconjug. Chem. 14:282–286 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. Y. Ikeda, S. Kawahara, K. Yoshinari, S. Fujita, and K. Taira. Specific 3′-terminal modification of DNA with a novel nucleoside analogue that allows a covalent linkage of a nuclear localization signal and enhancement of DNA stability. Chembiochem 6:297–303 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. P. S. Eder, R. J. DeVine, J. M. Dagle, and J. A. Walder. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res. Dev. 1:141–151 (1991).

    PubMed  CAS  Google Scholar 

  26. M. A. Zanta, P. Belguise-Valladier, and J. P. Behr. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 96:91–96 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. M. Taki, Y. Kato, M. Miyagishi, Y. Takagi, and K. Taira. Small-interfering-RNA expression in cells based on an efficiently constructed dumbbell-shaped DNA. Angew. Chem., Int. Ed. Engl. 43:3160–3163 (2004).

    Article  CAS  Google Scholar 

  28. M. Hashida, M. Nishikawa, F. Yamashita, and Y. Takakura. Cell-specific delivery of genes with glycosylated carriers. Adv. Drug. Deliv. Rev. 52:187–196 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. S. Kawakami, S. Fumoto, M. Nishikawa, F. Yamashita, and M. Hashida. In vivo gene delivery to the liver using novel galactosylated cationic liposomes. Pharm. Res. 17:306–313 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. J. C. Perales, T. Ferkol, H. Beegen, O. D. Ratnoff, and R. W. Hanson. Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc. Natl. Acad. Sci. USA 91:4086–4090 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. J. S. Remy, A. Kichler, V. Mordvinov, F. Schuber, and J. P. Behr. Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc. Natl. Acad. Sci. USA 92:1744–1748 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, and K. Kataoka. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127:1624–1625 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. Y. Hattori, S. Kawakami, S. Suzuki, F. Yamashita, and M. Hashida. Enhancement of immune responses by DNA vaccination through targeted gene delivery using mannosylated cationic liposome formulations following intravenous administration in mice. Biochem. Biophys. Res. Commun. 317:992–999 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. S. Kawakami, Y. Hattori, Y. Lu, Y. Higuchi, F. Yamashita, and M. Hashida. Effect of cationic charge on receptor-mediated transfection using mannosylated cationic liposome/plasmid DNA complexes following the intravenous administration in mice. Pharmazie 59:405–408 (2004).

    PubMed  CAS  Google Scholar 

  35. P. Erbacher, M. T. Bousser, J. Raimond, M. Monsigny, P. Midoux, and A. C. Roche. Gene transfer by DNA/glycosylated polylysine complexes into human blood monocyte-derived macrophages. Hum. Gene Ther. 7:721–729 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. J. F. Ross, P. K. Chaudhuri, and M. Ratnam. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73:2432–2443 (1994).

    Article  PubMed  CAS  Google Scholar 

  37. S. Wang, R. J. Lee, G. Cauchon, D. G. Gorenstein, and P. S. Low. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc. Natl. Acad. Sci. USA 92:3318–3322 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. J. J. Turek, C. P. Leamon, and P. S. Low. Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J. Cell Sci. 106:423–430 (1993).

    PubMed  CAS  Google Scholar 

  39. S. Hwa Kim, J. Hoon Jeong, K. Chul Cho, S. Wan Kim, and T. Gwan Park. Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J. Control. Release 104:223–232 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. J. A. Eble. Collagen-binding integrins as pharmaceutical targets. Curr. Pharm. Des. 11:867–880 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004).

    Article  PubMed  Google Scholar 

  42. P. Aisen. Transferrin receptor 1. Int. J. Biochem. Cell Biol. 36:2137–2143 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. S. Hu-Lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res. 65:8984–8992 (2005).

    Article  PubMed  CAS  Google Scholar 

  44. M. Mammen, S. K. Choi, and G. M. Whitesides. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37:2754–2794 (1998).

    Article  Google Scholar 

  45. G. P. Adams and L. M. Weiner. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23:1147–1157 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. A. Wright and S. L. Morrison. Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 15:26–32 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. R. Niwa, E. Shoji-Hosaka, M. Sakurada, T. Shinkawa, K. Uchida, K. Nakamura, K. Matsushima, R. Ueda, N. Hanai, and K. Shitara. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res. 64:2127–2133 (2004).

    Article  PubMed  CAS  Google Scholar 

  48. P. J. Hudson and C. Souriau. Engineered antibodies. Nat. Med. 9:129–134 (2003).

    Article  PubMed  CAS  Google Scholar 

  49. P. Holliger and P. J. Hudson. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23:1126–1136 (2005).

    Article  PubMed  CAS  Google Scholar 

  50. L. Grosse-Hovest, W. Wick, R. Minoia, M. Weller, H. G. Rammensee, G. Brem, and G. Jung. Supraagonistic, bispecific single-chain antibody purified from the serum of cloned, transgenic cows induces T-cell-mediated killing of glioblastoma cells in vitro and in vivo. Int. J. Cancer 117:1060–1064 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. M. K. Robinson, M. Doss, C. Shaller, D. Narayanan, J. D. Marks, L. P. Adler, D. E. Gonzalez Trotter, and G. P. Adams. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res. 65:1471–1478 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. I. Tomlinson and P. Holliger. Methods for generating multivalent and bispecific antibody fragments. Methods Enzymol. 326:461–479 (2000).

    PubMed  CAS  Google Scholar 

  53. J. L. Casey, M. P. Napier, D. P. King, R. B. Pedley, L. C. Chaplin, N. Weir, L. Skelton, A. J. Green, L. D. Hope-Stone, G. T. Yarranton, and R. H. Begent. Tumour targeting of humanised cross-linked divalent-Fab' antibody fragments: a clinical phase I/II study. Br. J. Cancer 86:1401–1410 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. D. J. King, et al. Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 54:6176–6185 (1994).

    PubMed  CAS  Google Scholar 

  55. P. Holliger, T. Prospero, and G. Winter. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90:6444–6448 (1993).

    Article  PubMed  CAS  Google Scholar 

  56. A. M. Merchant, Z. Zhu, J. Q. Yuan, A. Goddard, C. W. Adams, L. G. Presta, and P. Carter. An efficient route to human bispecific IgG. Nat. Biotechnol. 16:677–681 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. J. Kriangkum, B. Xu, L. P. Nagata, R. E. Fulton, and M. R. Suresh. Bispecific and bifunctional single chain recombinant antibodies. Biomol. Eng. 18:31–40 (2001).

    Article  PubMed  CAS  Google Scholar 

  58. P. Hoffmann, R. Hofmeister, K. Brischwein, C. Brandl, S. Crommer, R. Bargou, C. Itin, N. Prang, and P. A. Baeuerle. Serial killing of tumor cells by cytotoxic T-cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int. J. Cancer 115:98–104 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. J. Schlenzka, T. M. Moehler, S. M. Kipriyanov, M. Kornacker, A. Benner, A. Bahre, M. J. Stassar, H. J. Schafer, M. Little, H. Goldschmidt, and B. Cochlovius. Combined effect of recombinant CD19 × CD16 diabody and thalidomide in a preclinical model of human B cell lymphoma. Anti-cancer Drugs 15:915–919 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. A. P. Chapman. PEGylated antibodies and antibody fragments for improved therapy. Adv. Drug Deliv. Rev. 54:531–545 (2002).

    Article  PubMed  CAS  Google Scholar 

  61. S. Frokjaer and D. E. Otzen. Protein drug stability: a formulation challenge. Nat. Rev. Drug Discov. 4:298–306 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. A. P. Chapman, P. Antoniw, M. Spitali, S. West, S. Stephens, and D. J. King. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol. 17:780–783 (1999).

    Article  PubMed  CAS  Google Scholar 

  63. A. N. Weir, A. Nesbitt, A. P. Chapman, A. G. Popplewell, P. Antoniw, and A. D. Lawson. Formatting antibody fragments to mediate specific therapeutic functions. Biochem. Soc. Trans. 30:512–516 (2002)

    Article  PubMed  CAS  Google Scholar 

  64. S. Kubetzko, C. A. Sarkar, and A. Pluckthun. Protein PEGylation decreases observed target association rates via a dual blocking mechanism. Mol. Pharmacol. 68:1439–1454 (2005).

    Article  PubMed  CAS  Google Scholar 

  65. K. Yang, A. Basu, M. Wang, R. Chintala, M. C. Hsieh, S. Liu, J. Hua, Z. Zhang, J. Zhou, M. Li, H. Phyu, G. Petti, M. Mendez, H. Janjua, P. Peng, C. Longley, V. Borowski, M. Mehlig, and D. Filpula. Tailoring structure-function and pharmacokinetic properties of single-chain Fv proteins by site-specific PEGylation. Protein Eng. 16:761–770 (2003).

    Article  PubMed  CAS  Google Scholar 

  66. H. K. Binz, P. Amstutz, and A. Pluckthun. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23:1257–1268 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. R. C. Ladner, A. K. Sato, J. Gorzelany, and M. de Souza. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov. Today 9:525–529 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. M. Hust and S. Dubel. Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol. Biol. 295:71–96 (2005).

    PubMed  CAS  Google Scholar 

  69. J. Hanes, C. Schaffitzel, A. Knappik, and A. Pluckthun. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18:1287–1292 (2000).

    Article  PubMed  CAS  Google Scholar 

  70. S. Fujita, S. Y. Sawata, R. Yamamoto-Fujita R, Y. Endo, H. Kise, M. Iwakura, and K. Taira. Novel approach for linking genotype to phenotype in vitro by exploiting an extremely strong interaction between RNA and protein. J. Med. Chem. 45:1598–1606 (2002).

    Article  PubMed  CAS  Google Scholar 

  71. J. M. Zhou, S. Fujita, M. Warashina, T. Baba, and K. Taira. A novel strategy by the action of ricin that connects phenotype and genotype without loss of the diversity of libraries. J. Am. Chem. Soc. 124:538–543 (2002).

    Article  PubMed  CAS  Google Scholar 

  72. S. Y. Sawata, E. Suyama, and K. Taira. A system based on specific protein-RNA interactions for analysis of target protein-protein interactions in vitro: successful selection of membrane-bound Bak-Bcl-xL proteins in vitro. Protein Eng. Des. Sel. 17:501–518 (2004).

    Article  PubMed  CAS  Google Scholar 

  73. S. Y. Sawata and K. Taira. Modified peptide selection in vitro by introduction of a protein-RNA interaction. Protein Eng. 16:1115–1124 (2003).

    Article  PubMed  CAS  Google Scholar 

  74. D. S. Wilson, A. D. Keefe, and J. W. Szostak. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. USA 98:3750–3755 (2001).

    Article  PubMed  CAS  Google Scholar 

  75. M. A. Poul, B. Becerril, U. B. Nielsen, P. Morisson, and J. D. Marks. Selection of tumor-specific internalizing human antibodies from phage libraries. J. Mol. Biol. 301:1149–1161 (2000).

    Article  PubMed  CAS  Google Scholar 

  76. B. Liu, F. Conrad, M. R. Cooperberg, D. B. Kirpotin, and J. D. Marks. Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res. 64:704–710 (2004).

    Article  PubMed  CAS  Google Scholar 

  77. J. W. Park, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8:1172–1181 (2002).

    PubMed  CAS  Google Scholar 

  78. X. Li, P. Stuckert, I. Bosch, J. D. Marks, and W. A. Marasco. Single-chain antibody-mediated gene delivery into ErbB2-positive human breast cancer cells. Cancer Gene Ther. 8:555–565 (2001).

    Article  PubMed  CAS  Google Scholar 

  79. M. A. Eaton, et al. A new self-assembling system for targeted gene delivery. Angew. Chem., Int. Ed. Engl. 39:4063–4067 (2000).

    Article  CAS  Google Scholar 

  80. Y. Zhang, Y. F. Zhang, J. Bryant, A. Charles, R. J. Boado, and W. M. Pardridge. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10:3667–3677 (2004).

    Article  PubMed  CAS  Google Scholar 

  81. M. C. de Lima, M. T. da Cruz, A. L. Cardoso, S. Simoes, and L. P. de Almeida. Liposomal and viral vectors for gene therapy of the central nervous system. Curr. Drug Targets CNS Neurol Disord. 4:453–465 (2005).

    Article  PubMed  Google Scholar 

  82. E. Song, P. Zhu, S. K. Lee, D. Chowdhury, S. Kussman, D. M. Dykxhoorn, Y. Feng, D. Palliser, D. B. Weiner, P. Shankar, W. A. Marasco, and J. Lieberman. Antibody-mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23:709–717 (2005).

    Article  PubMed  CAS  Google Scholar 

  83. A. M. Wu and P. D. Senter. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol. 23:1137–1146 (2005).

    Article  PubMed  CAS  Google Scholar 

  84. T. Yokota, D. E. Milenic, M. Whitlow, and J. Schlom. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52:3402–3408 (1992).

    PubMed  CAS  Google Scholar 

  85. K. Fujimori, D. C. Covell, J. E. Fletcher, and J. N. Weinstein. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab)2, and Fab in tumors. Cancer Res. 49:5656–5663 (1989).

    PubMed  CAS  Google Scholar 

  86. G. P. Adams, R. Schier, A. M. McCall, H. H. Simmons, E. M. Horak, R. K. Alpaugh, J. D. Marks, and L. M. Weiner. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 61:4750–4755 (2001).

    PubMed  CAS  Google Scholar 

  87. R. K. Jain and L. T. Baxter. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48:7022–7032 (1988).

    PubMed  CAS  Google Scholar 

  88. R. K. Jain. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 50:814s–819s (1990).

    PubMed  CAS  Google Scholar 

  89. E. N. Kaufman and R. K. Jain. Effect of bivalent interaction upon apparent antibody affinity: experimental confirmation of theory using fluorescence photobleaching and implications for antibody binding assays. Cancer Res. 52:4157–4167 (1992).

    PubMed  CAS  Google Scholar 

  90. U. B. Nielsen, G. P. Adams, L. M. Weiner LM, and Marks J. D. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. 60:6434–6440 (2000).

    PubMed  CAS  Google Scholar 

  91. A. Balmain, J. Gray, and B. Ponder. The genetics and genomics of cancer. Nat. Genet. 33:238–244 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Taira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, Y., Taira, K. Ligand-Targeted Delivery of Therapeutic siRNA. Pharm Res 23, 1631–1640 (2006). https://doi.org/10.1007/s11095-006-9001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9001-x

Key words

Navigation