Skip to main content

Advertisement

Log in

Decline in Exogenous Gene Expression in Primate Brain Following Intravenous Administration Is Due to Plasmid Degradation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Nonviral gene transfer to the brain of adult Rhesus monkeys is possible with a single intravenous administration of plasmid DNA that is encapsulated in the interior of pegylated immunoliposomes, which are targeted across membrane barriers in vivo with a monoclonal antibody to the human insulin receptor.

Methods

The present studies measure the rate of decay of luciferase gene expression in the Rhesus monkey with luciferase enzyme assays, Southern blotting, and real-time polymerase chain reaction.

Results

Luciferase enzyme activity in frontal cortex, cerebellum, and liver decays with a t1/2 of 2.1 ± 0.1, 2.6 ± 0.2, and 1.7 ± 0.01 days, respectively. Luciferase plasmid in brain and liver was detectable by Southern blotting at 2 days, but not at 7 or 14 days. The concentration of luciferase plasmid DNA in brain and liver was measured by real-time polymerase chain reaction, and decayed with t1/2 of 1.3 ± 0.3 and 2.7 ± 0.5 days, respectively.

Conclusions

The maximal concentration of luciferase plasmid DNA in Rhesus monkey brain was 3–4 molecules/cell following an i.v. administration of 12 μg/kg pegylated immunoliposome encapsulated plasmid DNA. These results demonstrate that the rate of loss of exogenous gene expression in the primate in vivo correlates with the rate of DNA degradation of the exogenous plasmid DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W. M. Pardridge (2003) ArticleTitleGene targeting in vivo with pegylated immunoliposomes Methods Enzymol. (Liposomes, Part C) 373 507–528 Occurrence Handle1:CAS:528:DC%2BD2cXhvFaqtr4%3D

    CAS  Google Scholar 

  2. Y. Zhang F. Schlachetzki W. M. Pardridge (2003) ArticleTitleGlobal non-viral gene transfer to the primate brain following intravenous administration Mol. Ther. 7 11–18 Occurrence Handle12573613 Occurrence Handle1:CAS:528:DC%2BD3sXps1CqsA%3D%3D Occurrence Handle10.1016/S1525-0016(02)00018-7

    Article  PubMed  CAS  Google Scholar 

  3. Y. Zhang F. Schlachetzki J. Y. Li R. J. Boado W. M. Pardridge (2003) ArticleTitleOrgan-specific gene expression in the Rhesus monkey eye following intravenous non-viral gene transfer Mol. Vis. 9 465–472 Occurrence Handle14551536 Occurrence Handle1:CAS:528:DC%2BD3sXpt1Wkt7g%3D

    PubMed  CAS  Google Scholar 

  4. R. J. Boado W. M. Pardridge (1998) ArticleTitleTen nucleotide cis element in the 3′-untranslated region of the GLUT1 glucose transporter mRNA increases gene expression via mRNA stabilization Mol. Brain Res. 59 109–113 Occurrence Handle9729315 Occurrence Handle1:CAS:528:DyaK1cXkvFOktr0%3D Occurrence Handle10.1016/S0169-328X(98)00134-X

    Article  PubMed  CAS  Google Scholar 

  5. W. M. Pardridge Y.-S. Kang J. L. Buciak J. Yang (1995) ArticleTitleHuman insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood–brain barrier in vivo in the primate Pharm. Res. 12 807–816 Occurrence Handle7667183 Occurrence Handle1:CAS:528:DyaK2MXmtV2qurk%3D Occurrence Handle10.1023/A:1016244500596

    Article  PubMed  CAS  Google Scholar 

  6. Z. Y. Chen C. Y. He L. Meuse M. A. Kay (2004) ArticleTitleSilencing of episomal transgene expression by plasmid bacterial DNA elements in vivo Gene Ther. 11 856–864 Occurrence Handle15029228 Occurrence Handle1:CAS:528:DC%2BD2cXjslWqsLw%3D Occurrence Handle10.1038/sj.gt.3302231

    Article  PubMed  CAS  Google Scholar 

  7. N. S. Yew M. Przybylska R. J. Ziegler D. Liu S. H. Cheng (2001) ArticleTitleHigh and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter Mol. Ther. 4 75–82 Occurrence Handle11472109 Occurrence Handle1:CAS:528:DC%2BD38XhvFKiu7c%3D Occurrence Handle10.1006/mthe.2001.0415

    Article  PubMed  CAS  Google Scholar 

  8. D. P. Howell R. J. Krieser A. Eastman M. A. Barry (2003) ArticleTitleDeoxyribonuclease II is a lysosomal barrier to transfection Mol. Ther. 8 957–963 Occurrence Handle14664798 Occurrence Handle10.1016/j.ymthe.2003.09.011

    Article  PubMed  Google Scholar 

  9. D. Lechardeur K. J. Sohn M. Haardt P. B. Joshi M. Monck R. W. Graham B. Beatty J. Squire H. O’Brodovich G. L Lukacs (1999) ArticleTitleMetabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer Gene Ther. 6 482–497 Occurrence Handle10476208 Occurrence Handle1:CAS:528:DyaK1MXit1Omu7s%3D Occurrence Handle10.1038/sj.gt.3300867

    Article  PubMed  CAS  Google Scholar 

  10. H. J. Lipps A. C. W. Jenke K. Nehlsen M. F. Scinteie I. M. Stehle J. Bode (2003) ArticleTitleChromosome-based vectors for gene therapy Gene 304 23–33 Occurrence Handle12568712 Occurrence Handle1:CAS:528:DC%2BD3sXosFSqsg%3D%3D Occurrence Handle10.1016/S0378-1119(02)01215-5

    Article  PubMed  CAS  Google Scholar 

  11. S. C. Ribeiro G. A. Monteiro D. M. F. Prazeres (2004) ArticleTitleThe role of polyadenylation signal secornary structures on the resistance of plasmid vectors to nucleases J. Gene Med. 6 565–573 Occurrence Handle15133767 Occurrence Handle1:CAS:528:DC%2BD2cXlt1Cmtr8%3D Occurrence Handle10.1002/jgm.536

    Article  PubMed  CAS  Google Scholar 

  12. B. H. C. Jenke C. P. Fetzer I. M. Stehle F. Jonsson F. O. Fackelmayer H. Conradt J. Bode H. J. Lipps (2002) ArticleTitleAn episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo EMBO J. 3 349–354 Occurrence Handle1:CAS:528:DC%2BD38XjtlGksL8%3D Occurrence Handle10.1093/embo-reports/kvf070

    Article  CAS  Google Scholar 

  13. F. H. Biase M. M Franco L. R. Goulart R. C. Antunes (2002) ArticleTitleProtocol for extraction of genomic DNA from swine solid tissues Genet. Mol. Biol. 25 313–315 Occurrence Handle1:CAS:528:DC%2BD3sXpsFOr Occurrence Handle10.1590/S1415-47572002000300011

    Article  CAS  Google Scholar 

  14. N. Shi Y. Zhang C. Zhu R. J. Boado W. M. Pardridge (2001) ArticleTitleBrain-specific expression of an exogenous gene after i.v. administration Proc. Natl. Acad. Sci. USA 98 12754–12759 Occurrence Handle11592987 Occurrence Handle1:CAS:528:DC%2BD3MXotFahs7w%3D Occurrence Handle10.1073/pnas.221450098

    Article  PubMed  CAS  Google Scholar 

  15. H. Carlsen J. O. Moskaug S. H. Fromm R. Blomhoff (2002) ArticleTitleIn vivo imaging of NF-κB activity J. Immunol. 168 1441–1446 Occurrence Handle11801687 Occurrence Handle1:CAS:528:DC%2BD38XpsFertA%3D%3D

    PubMed  CAS  Google Scholar 

  16. A. Bachmair D. Finley A. Varshavsky (1986) ArticleTitleIn vivo half-life of a protein is a function of its amino-terminal residue Science 234 179–186 Occurrence Handle3018930 Occurrence Handle1:CAS:528:DyaL28Xmt1Sjtro%3D

    PubMed  CAS  Google Scholar 

  17. A. Scherpereel R. Wiewrodt M. Christofidou-Solomidou R. Gervais J. C. Murciano S. M. Albelda V. R. Muzykantov (2001) ArticleTitleCell-selective intracellular delivery of a foreign enzyme to endothelium in vivo using vascular immunotargeting FASEB J. 15 416–426 Occurrence Handle11156957 Occurrence Handle1:CAS:528:DC%2BD3MXhsFemsr8%3D Occurrence Handle10.1096/fj.00-0022com

    Article  PubMed  CAS  Google Scholar 

  18. Y. Zhang W. M. Pardridge (2005) ArticleTitleDelivery of β-galactosidase to mouse brain via the blood–brain barrier transferrin receptor J. Pharmacol. Exp. Ther. 313 1075–1081 Occurrence Handle15718287 Occurrence Handle1:CAS:528:DC%2BD2MXkslekt7s%3D Occurrence Handle10.1124/jpet.104.082974

    Article  PubMed  CAS  Google Scholar 

  19. Y. Zhang R. J. Boado W. M. Pardridge (2003) ArticleTitleMarked enhancement in gene expression by targeting the human insulin receptor J. Gene Med. 5 157–163 Occurrence Handle12539153 Occurrence Handle1:CAS:528:DC%2BD3sXit1Glsr0%3D Occurrence Handle10.1002/jgm.333

    Article  PubMed  CAS  Google Scholar 

  20. P. Chomczynski K. Mackey R. Drews W. Wilfinger (1997) ArticleTitleDNAzol: a reagent for the rapid isolation of genomic DNA BioTechniques 22 550–553 Occurrence Handle9067036 Occurrence Handle1:CAS:528:DyaK2sXhvVajs78%3D

    PubMed  CAS  Google Scholar 

  21. Y. Zhang F. Calon C. Zhu R. J. Boado W. M. Pardridge (2003) ArticleTitleIntravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental Parkinsonism Hum. Gene Ther. 14 1–12 Occurrence Handle12573054 Occurrence Handle10.1089/10430340360464660

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Neurotoxin Exposure Treatment Research Program of the U.S. Department of Defense, and by NIH grant NS-53540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Pardridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, C., Zhang, Y., Boado, R.J. et al. Decline in Exogenous Gene Expression in Primate Brain Following Intravenous Administration Is Due to Plasmid Degradation. Pharm Res 23, 1586–1590 (2006). https://doi.org/10.1007/s11095-006-0274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-0274-x

Key words

Navigation