Skip to main content

Advertisement

Log in

Expression of Basic Fibroblast Growth Factor Correlates with Resistance to Paclitaxel in Human Patient Tumors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Background

Preclinical results indicate acidic fibroblast growth factor (aFGF) and basic FGF (bFGF) present in solid tumors as a cause of broad-spectrum chemoresistance, whereas earlier clinical studies suggest that bFGF expression is associated with opposing outcomes in patients. We investigated the relationship between FGF expression and paclitaxel activity in tumors from bladder, breast, head and neck, ovarian, and prostate cancer patients.

Materials and Methods

Tumors (n = 96) were maintained in three-dimensional histocultures, retaining tumor–stromal interaction. Bladder tumors were treated with paclitaxel for 2 h, and the other tumors for 24 h. Antiproliferative and proapoptotic effects of paclitaxel were quantified and correlated with expression of aFGF, bFGF, P-glycoprotein (Pgp), p53, and bcl-2.

Results

Fifty-one percent (49/96) and 63% (61/96) of tumors showed aFGF and bFGF staining, respectively. aFGF expression was positively correlated with tumor stage (p < 0.01), and bFGF expression with tumor grade and Pgp expression (p < 0.05). Paclitaxel inhibited antiproliferation in 86% of tumors (83/96), with an average inhibition of 46 ± 19% (mean ± SD) in the responding tumors. Paclitaxel also induced apoptosis in 96% of tumors (92/96), with an average apoptotic index of 12 ± 7% in the responding tumors. aFGF expression did not correlate with tumor sensitivity to paclitaxel, whereas bFGF expression showed an inverse correlation (p < 0.01). bFGF expression was a stronger predictor of paclitaxel resistance compared to Pgp, p53, or Bcl-2.

Conclusion

These results support a role of bFGF in paclitaxel resistance in human patient tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I. Ader C. Toulas F. Dalenc C. Delmas J. Bonnet E. Cohen-Jonathan G. Favre (2002) ArticleTitleRhoB controls the 24 kDa FGF-2-induced radioresistance in HeLa cells by preventing post-mitotic cell death Oncogene 21 5998–6006 Occurrence Handle12203112 Occurrence Handle1:CAS:528:DC%2BD38XmsFGqs78%3D Occurrence Handle10.1038/sj.onc.1205746

    Article  PubMed  CAS  Google Scholar 

  2. C. J. Powers S. W. McLeskey A. Wellstein (2000) ArticleTitleFibroblast growth factors, their receptors and signaling Endocr.-Relat. Cancer 7 165–197 Occurrence Handle11021964 Occurrence Handle1:CAS:528:DC%2BD3cXot1Wrs7c%3D Occurrence Handle10.1677/erc.0.0070165

    Article  PubMed  CAS  Google Scholar 

  3. G. Szebenyi J. F. Fallon (1999) ArticleTitleFibroblast growth factors as multifunctional signaling factors Int. Rev. Cytol. 185 45–106 Occurrence Handle9750265 Occurrence Handle1:CAS:528:DyaK1MXlsVWk Occurrence Handle10.1016/S0074-7696(08)60149-7

    Article  PubMed  CAS  Google Scholar 

  4. J. K. Dow R. W. Vere White Particlede (2000) ArticleTitleFibroblast growth factor 2: its structure and property, paracrine function, tumor angiogenesis, and prostate-related mitogenic and oncogenic functions Urology 55 800–806 Occurrence Handle10840080 Occurrence Handle1:STN:280:DC%2BD3czgtFSguw%3D%3D Occurrence Handle10.1016/S0090-4295(00)00457-X

    Article  PubMed  CAS  Google Scholar 

  5. S. M. Carroll C. M. Carroll R. W. Stremel S. J. Heilman J. M. Steffen G. R. Tobin J. H. Barker (2000) ArticleTitleVascular delay and administration of basic fibroblast growth factor augment latissimus dorsi muscle flap perfusion and function Plast. Reconstr. Surg. 105 964–971 Occurrence Handle10724256 Occurrence Handle1:STN:280:DC%2BD3c7os1ymsw%3D%3D

    PubMed  CAS  Google Scholar 

  6. G. Brill N. Vaisman G. Neufeld C. Kalcheim (1992) ArticleTitleBHK-21-derived cell lines that produce basic fibroblast growth factor, but not parental BHK-21 cells, initiate neuronal differentiation of neural crest progenitors Development 115 1059–1069 Occurrence Handle1451657 Occurrence Handle1:CAS:528:DyaK3sXhtVyj

    PubMed  CAS  Google Scholar 

  7. G. Dini S. Funghini E. Witort L. Magnelli E. Fanti D. B. Rifkin M. Rosso ParticleDel (2002) ArticleTitleOverexpression of the 18 kDa and 22/24 kDa FGF-2 isoforms results in differential drug resistance and amplification potential J. Cell. Physiol. 193 64–72 Occurrence Handle12209881 Occurrence Handle1:CAS:528:DC%2BD38XmvFWjs7g%3D Occurrence Handle10.1002/jcp.10152

    Article  PubMed  CAS  Google Scholar 

  8. O. E. Pardo A. Arcaro G. Salerno S. Raguz J. Downward M. J. Seckl (2002) ArticleTitleFibroblast growth factor-2 induces translational regulation of Bcl-XL and Bcl-2 via a MEK-dependent pathway: correlation with resistance to etoposide-induced apoptosis J. Biol. Chem. 277 12040–12046 Occurrence Handle11815602 Occurrence Handle1:CAS:528:DC%2BD38XivVekt78%3D Occurrence Handle10.1074/jbc.M109006200

    Article  PubMed  CAS  Google Scholar 

  9. E. Cohen-Jonathan C. Toulas S. Monteil B. Couderc A. Maret J. J. Bard H. Prats N. Daly-Schveitzer G. Favre (1997) ArticleTitleRadioresistance induced by the high molecular forms of the basic fibroblast growth factor is associated with an increased G2 delay and a hyperphosphorylation of p34CDC2 in HeLa cells Cancer Res. 57 1364–1370 Occurrence Handle9102225 Occurrence Handle1:CAS:528:DyaK2sXit1Onur4%3D

    PubMed  CAS  Google Scholar 

  10. J. C. Fox J. R. Shanley (1996) ArticleTitleAntisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells J. Biol. Chem. 271 12578–12584 Occurrence Handle8647868 Occurrence Handle1:CAS:528:DyaK28XjtFant7k%3D Occurrence Handle10.1074/jbc.271.21.12578

    Article  PubMed  CAS  Google Scholar 

  11. Z. Fuks R. S. Persaud A. Alfieri M. McLoughlin D. Ehleiter J. L. Schwartz A. P. Seddon C. Cordon-Cardo A. Haimovitz-Friedman (1994) ArticleTitleBasic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo Cancer Res. 54 2582–2590 Occurrence Handle8168084 Occurrence Handle1:CAS:528:DyaK2cXktVCjsbY%3D

    PubMed  CAS  Google Scholar 

  12. L. A. Pena Z. Fuks R. N. Kolesnick (2000) ArticleTitleRadiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency Cancer Res. 60 321–327 Occurrence Handle10667583 Occurrence Handle1:CAS:528:DC%2BD3cXhtVahs7c%3D

    PubMed  CAS  Google Scholar 

  13. H. Miyake I. Hara K. Gohji K. Yoshimura S. Arakawa S. Kamidono (1998) ArticleTitleExpression of basic fibroblast growth factor is associated with resistance to cisplatin in a human bladder cancer cell line Cancer Lett. 123 121–126 Occurrence Handle9489477 Occurrence Handle1:CAS:528:DyaK1cXnt12htg%3D%3D Occurrence Handle10.1016/S0304-3835(97)00365-0

    Article  PubMed  CAS  Google Scholar 

  14. A. B. Coleman M. Z. Metz C. A. Donohue R. E. Schwarz S. E. Kane (2002) ArticleTitleChemosensitization by fibroblast growth factor-2 is not dependent upon proliferation, S-phase accumulation, or p53 status Biochem. Pharmacol. 64 1111–1123 Occurrence Handle12234614 Occurrence Handle1:CAS:528:DC%2BD38XntVWqsLY%3D Occurrence Handle10.1016/S0006-2952(02)01268-6

    Article  PubMed  CAS  Google Scholar 

  15. P. Maloof Q. Wang H. Wang D. Stein T. N. Denny J. Yahalom E. Fenig R. Wieder (1999) ArticleTitleOverexpression of basic fibroblast growth factor (FGF-2) downregulates Bcl-2 and promotes apoptosis in MCF-7 human breast cancer cells Breast Cancer Res. Treat. 56 153–167 Occurrence Handle10573108 Occurrence Handle1:CAS:528:DyaK1MXnvVKitrw%3D Occurrence Handle10.1023/A:1006258510381

    Article  PubMed  CAS  Google Scholar 

  16. Q. Wang P. Maloof H. Wang E. Fenig D. Stein G. Nichols T. N. Denny J. Yahalom R. Wieder (1998) ArticleTitleBasic fibroblast growth factor downregulates Bcl-2 and promotes apoptosis in MCF-7 human breast cancer cells Exp. Cell Res. 238 177–187 Occurrence Handle9457070 Occurrence Handle1:CAS:528:DyaK1cXmt1ShtA%3D%3D Occurrence Handle10.1006/excr.1997.3820

    Article  PubMed  CAS  Google Scholar 

  17. H. Wang M. Rubin E. Fenig A. DeBlasio J. Mendelsohn J. Yahalom R. Wieder (1997) ArticleTitleBasic fibroblast growth factor causes growth arrest in MCF-7 human breast cancer cells while inducing both mitogenic and inhibitory G1 events Cancer Res. 57 1750–1757 Occurrence Handle9135019 Occurrence Handle1:CAS:528:DyaK2sXjtFeltr4%3D

    PubMed  CAS  Google Scholar 

  18. S. A. Burchill G. Westwood (2002) ArticleTitleMechanism of basic fibroblast growth factor-induced cell death Apoptosis 7 5–12 Occurrence Handle11773700 Occurrence Handle1:CAS:528:DC%2BD38Xit1aisb8%3D Occurrence Handle10.1023/A:1013548426273

    Article  PubMed  CAS  Google Scholar 

  19. A. B. Coleman (2003) ArticleTitlePositive and negative regulation of cellular sensitivity to anti-cancer drugs by FGF-2 Drug Resist. Updat. 6 85–94 Occurrence Handle12729806 Occurrence Handle1:CAS:528:DC%2BD3sXjt1Ojsr0%3D Occurrence Handle10.1016/S1368-7646(03)00023-2

    Article  PubMed  CAS  Google Scholar 

  20. A. G. Estevez R. Radi L. Barbeito J. T. Shin J. A. Thompson (1995) ArticleTitlePeroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotrophic factors J. Neurochem. 65 1543–1550 Occurrence Handle7561848 Occurrence Handle1:CAS:528:DyaK2MXotFOlu7g%3D Occurrence Handle10.1046/j.1471-4159.1995.65041543.x

    Article  PubMed  CAS  Google Scholar 

  21. K. Boelaert C. J. McCabe L. A. Tannahill N. J. Gittoes R. L. Holder J. C. Watkinson A. R. Bradwell M. C. Sheppard J. A. Franklyn (2003) ArticleTitlePituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer J. Clin. Endocrinol. Metab. 88 2341–2347 Occurrence Handle12727994 Occurrence Handle1:CAS:528:DC%2BD3sXjs1Orsrk%3D Occurrence Handle10.1210/jc.2002-021113

    Article  PubMed  CAS  Google Scholar 

  22. T. Ruotsalainen H. Joensuu K. Mattson P. Salven (2002) ArticleTitleHigh pretreatment serum concentration of basic fibroblast growth factor is a predictor of poor prognosis in small cell lung cancer Cancer Epidemiol. Biomark. Prev. 11 1492–1495 Occurrence Handle1:CAS:528:DC%2BD38XpsVyksLo%3D

    CAS  Google Scholar 

  23. R. T. Poon I. O. Ng C. Lau W. C. Yu S. T. Fan J. Wong (2001) ArticleTitleCorrelation of serum basic fibroblast growth factor levels with clinicopathologic features and postoperative recurrence in hepatocellular carcinoma Am. J. Surg. 182 298–304 Occurrence Handle11587697 Occurrence Handle1:CAS:528:DC%2BD3MXnt1Shtb0%3D Occurrence Handle10.1016/S0002-9610(01)00708-5

    Article  PubMed  CAS  Google Scholar 

  24. M. Bredel I. F. Pollack J. W. Campbell R. L. Hamilton (1997) ArticleTitleBasic fibroblast growth factor expression as a predictor of prognosis in pediatric high-grade gliomas Clin. Cancer Res. 3 2157–2164 Occurrence Handle9815610 Occurrence Handle1:CAS:528:DyaK2sXns1Ogt7Y%3D

    PubMed  CAS  Google Scholar 

  25. M. Volm R. Koomagi J. Mattern G. Stammler (1997) ArticleTitlePrognostic value of basic fibroblast growth factor and its receptor (FGFR-1) in patients with non-small cell lung carcinomas Eur. J. Cancer 33 691–693 Occurrence Handle9274456 Occurrence Handle1:STN:280:DyaK2svhvF2msg%3D%3D Occurrence Handle10.1016/S0959-8049(96)00411-X

    Article  PubMed  CAS  Google Scholar 

  26. T. Ueki T. Koji S. Tamiya P. K. Nakane M. Tsuneyoshi (1995) ArticleTitleExpression of basic fibroblast growth factor and fibroblast growth factor receptor in advanced gastric carcinoma J. Pathol. 177 353–361 Occurrence Handle8568589 Occurrence Handle1:STN:280:DyaK287msFSqsw%3D%3D Occurrence Handle10.1002/path.1711770405

    Article  PubMed  CAS  Google Scholar 

  27. B. Davidson I. Goldberg W. H. Gotlieb J. Kopolovic G. Ben Baruch J. M. Nesland R. Reich (2002) ArticleTitleThe prognostic value of metalloproteinases and angiogenic factors in ovarian carcinoma Mol. Cell. Endocrinol. 187 39–45 Occurrence Handle11988310 Occurrence Handle1:CAS:528:DC%2BD38Xjt1SqsLk%3D Occurrence Handle10.1016/S0303-7207(01)00709-2

    Article  PubMed  CAS  Google Scholar 

  28. A. Faridi C. Rudlowski S. Biesterfeld S. Schuh W. Rath W. Schroder (2002) ArticleTitleLong-term follow-up and prognostic significance of angiogenic basic fibroblast growth factor (bFGF) expression in patients with breast cancer Pathol. Res. Pract. 198 1–5 Occurrence Handle11866204 Occurrence Handle1:CAS:528:DC%2BD38Xit1emtLw%3D Occurrence Handle10.1078/0344-0338-00176

    Article  PubMed  CAS  Google Scholar 

  29. A. Obermair K. H. Taylor M. Janda J. L. Nicklin A. J. Crandon L. Perrin (2001) ArticleTitlePrimary fallopian tube carcinoma: the Queensland experience Int. J. Gynecol. Cancer 11 69–72 Occurrence Handle11285036 Occurrence Handle1:STN:280:DC%2BD3MzktlyltQ%3D%3D Occurrence Handle10.1046/j.1525-1438.2001.011001069.x

    Article  PubMed  CAS  Google Scholar 

  30. A. Obermair P. Speiser K. Reisenberger R. Ullrich K. Czerwenka A. Kaider R. Zeillinger M. Miksche (1998) ArticleTitleInfluence of intratumoral basic fibroblast growth factor concentration on survival in ovarian cancer patients Cancer Lett. 130 69–76 Occurrence Handle9751258 Occurrence Handle1:CAS:528:DyaK1cXkvFOmtbo%3D Occurrence Handle10.1016/S0304-3835(98)00119-0

    Article  PubMed  CAS  Google Scholar 

  31. U. Eppenberger W. Kueng M. Schlaeppi J. L. Roesel C. Benz H. Mueller A. Matter M. Zuber K. Luescher M. Litschgi M. Schmitt J. A. Foekens S. Eppenberger-Castori (1998) ArticleTitleMarkers of tumor angiogenesis and proteolysis independently define high- and low-risk subsets of node-negative breast cancer patients J. Clin. Oncol. 16 3129–3136 Occurrence Handle9738585 Occurrence Handle1:STN:280:DyaK1cvgvV2ltw%3D%3D

    PubMed  CAS  Google Scholar 

  32. R. Colomer J. Aparicio S. Montero C. Guzman L. Larrodera H. Cortes-Funes (1997) ArticleTitleLow levels of basic fibroblast growth factor (bFGF) are associated with a poor prognosis in human breast carcinoma Br. J. Cancer 76 1215–1220 Occurrence Handle9365172 Occurrence Handle1:STN:280:DyaK1c%2FjtVCmtg%3D%3D

    PubMed  CAS  Google Scholar 

  33. D. W. Visscher F. DeMattia S. Ottosen F. H. Sarkar J. D. Crissman (1995) ArticleTitleBiologic and clinical significance of basic fibroblast growth factor immunostaining in breast carcinoma Mod. Pathol. 8 665–670 Occurrence Handle8532703 Occurrence Handle1:STN:280:DyaK28%2FitVKhsw%3D%3D

    PubMed  CAS  Google Scholar 

  34. S. Song M. G. Wientjes Y. Gan J. L. Au (2000) ArticleTitleFibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs Proc. Natl. Acad. Sci. USA 97 8658–8663 Occurrence Handle10890892 Occurrence Handle1:CAS:528:DC%2BD3cXlt1GnsLg%3D Occurrence Handle10.1073/pnas.140210697

    Article  PubMed  CAS  Google Scholar 

  35. S. Song M. G. Wientjes C. Walsh J. L. Au (2001) ArticleTitleNontoxic doses of suramin enhance activity of paclitaxel against lung metastases Cancer Res. 61 6145–6150 Occurrence Handle11507065 Occurrence Handle1:CAS:528:DC%2BD3MXmt12ktLc%3D

    PubMed  CAS  Google Scholar 

  36. B. Yu, G. Wientjes, J. Au. bFGF as a therapeutic target for chemosensitization in colorectal cancer (Abstract). Proceedings AACR 47 (#6615) (2006).

  37. Y. Wei J. L. Au (2005) Role of tumour microenvironment in chemoresistance G. G. Meadows (Eds) Integration/Interaction of Oncologic Growth Springer Dordrecht, The Netherlands 285–321

    Google Scholar 

  38. N. Zahir V. M. Weaver (2004) ArticleTitleDeath in the third dimension: apoptosis regulation and tissue architecture Curr. Opin. Genet. Dev. 14 71–80 Occurrence Handle15108808 Occurrence Handle1:CAS:528:DC%2BD2cXps1yksw%3D%3D Occurrence Handle10.1016/j.gde.2003.12.005

    Article  PubMed  CAS  Google Scholar 

  39. T. Furukawa T. Kubota R. M. Hoffman (1995) ArticleTitleClinical applications of the histoculture drug response assay Clin. Cancer Res. 1 305–311 Occurrence Handle9815986 Occurrence Handle1:CAS:528:DyaK2sXhtVygu7k%3D

    PubMed  CAS  Google Scholar 

  40. T. Kubota N. Sasano O. Abe I. Nakao E. Kawamura T. Saito M. Endo K. Kimura H. Demura H. Sasano (1995) ArticleTitlePotential of the histoculture drug-response assay to contribute to cancer patient survival Clin. Cancer Res. 1 1537–1543 Occurrence Handle9815954 Occurrence Handle1:CAS:528:DyaK28XmvVWhsg%3D%3D

    PubMed  CAS  Google Scholar 

  41. K. T. Robbins K. M. Connors A. M. Storniolo C. Hanchett R. M. Hoffman (1994) ArticleTitleSponge-gel-supported histoculture drug-response assay for head and neck cancer. Correlations with clinical response to cisplatin Arch. Otolaryngol. Head Neck Surg. 120 288–292 Occurrence Handle8123238 Occurrence Handle1:STN:280:DyaK2c7mvVOjsQ%3D%3D

    PubMed  CAS  Google Scholar 

  42. Y. Gan M. G. Wientjes J. L. Au (1994) ArticleTitleRelationship between paclitaxel activity and pathobiology of human solid tumors Clin. Cancer Res. 4 2949–2955

    Google Scholar 

  43. Y. Gan M. G. Wientjes D. E. Schuller J. L. Au (1994) ArticleTitlePharmacodynamics of taxol in human head and neck tumors Cancer Res. 56 2086–2093

    Google Scholar 

  44. T. M. Ludden S. L. Beal L. B. Sheiner (1994) ArticleTitleComparison of the Akaike Information Criterion, the Schwarz criterion and the F test as guides to model selection J. Pharmacokinet. Biopharm. 22 431–445 Occurrence Handle7791040 Occurrence Handle1:STN:280:DyaK2MzhtFWgsg%3D%3D Occurrence Handle10.1007/BF02353864

    Article  PubMed  CAS  Google Scholar 

  45. D. Li S. H. Jang J. Kim M. G. Wientjes J. L. Au (2003) ArticleTitleEnhanced drug-induced apoptosis associated with P-glycoprotein overexpression is specific to antimicrotubule agents Pharm. Res. 20 45–50 Occurrence Handle12608535 Occurrence Handle10.1023/A:1022242607418

    Article  PubMed  Google Scholar 

  46. D. Li J. L. Au (2001) ArticleTitleMdr1 transfection causes enhanced apoptosis by paclitaxel: an effect independent of drug efflux function of P-glycoprotein Pharm. Res. 18 907–913 Occurrence Handle11496948 Occurrence Handle1:CAS:528:DC%2BD3MXlsV2it7o%3D Occurrence Handle10.1023/A:1010919823936

    Article  PubMed  CAS  Google Scholar 

  47. R. E. Friesel T. Maciag (1995) ArticleTitleMolecular mechanisms of angiogenesis: fibroblast growth factor signal transduction FASEB J. 9 919–925 Occurrence Handle7542215 Occurrence Handle1:CAS:528:DyaK2MXntFyrsbw%3D

    PubMed  CAS  Google Scholar 

  48. R. W. Lim C. Y. Zhu B. Stringer (1995) ArticleTitleDifferential regulation of primary response gene expression in skeletal muscle cells through multiple signal transduction pathways Biochim. Biophys. Acta 1266 91–100 Occurrence Handle7718627 Occurrence Handle10.1016/0167-4889(94)00226-5

    Article  PubMed  Google Scholar 

  49. R. I. Glazer C. Rohlff (1994) ArticleTitleTranscriptional regulation of multidrug resistance in breast cancer Breast Cancer Res. Treat. 31 263–271 Occurrence Handle7881104 Occurrence Handle1:CAS:528:DyaK2MXit1aluro%3D Occurrence Handle10.1007/BF00666159

    Article  PubMed  CAS  Google Scholar 

  50. C. A. O’Brian N. E. Ward K. R. Gravitt D. Fan (1994) ArticleTitleThe role of protein kinase C in multidrug resistance Cancer Treat. Res. 73 41–55 Occurrence Handle7710909 Occurrence Handle1:CAS:528:DyaK2MXmsVGnt74%3D

    PubMed  CAS  Google Scholar 

  51. B. Galy L. Creancier C. Zanibellato A. C. Prats H. Prats (2001) ArticleTitleTumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism Oncogene 20 1669–1677 Occurrence Handle11313915 Occurrence Handle1:CAS:528:DC%2BD3MXivFKhsLk%3D Occurrence Handle10.1038/sj.onc.1204271

    Article  PubMed  CAS  Google Scholar 

  52. K. V. Chin K. Ueda I. Pastan M. M. Gottesman (1992) ArticleTitleModulation of activity of the promoter of the human MDR1 gene by Ras and p53 Science 255 459–462 Occurrence Handle1346476 Occurrence Handle1:CAS:528:DyaK38XhtVSmurw%3D

    PubMed  CAS  Google Scholar 

  53. K. C. Kent S. Mii E. O. Harrington J. D. Chang S. Mallette J. A. Ware (1995) ArticleTitleRequirement for protein kinase C activation in basic fibroblast growth factor-induced human endothelial cell proliferation Circ. Res. 77 231–238 Occurrence Handle7542179 Occurrence Handle1:CAS:528:DyaK2MXntFartrg%3D

    PubMed  CAS  Google Scholar 

  54. T. Ueba T. Nosaka J. A. Takahashi F. Shibata R. Z. Florkiewicz B. Vogelstein Y. Oda H. Kikuchi M. Hatanaka (1994) ArticleTitleTranscriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells Proc. Natl. Acad. Sci. USA 91 9009–9013 Occurrence Handle8090761 Occurrence Handle1:CAS:528:DyaK2cXlvFOlsrY%3D Occurrence Handle10.1073/pnas.91.19.9009

    Article  PubMed  CAS  Google Scholar 

  55. R. L. Zastawny R. Salvino J. Chen S. Benchimol V. Ling (1993) ArticleTitleThe core promoter region of the P-glycoprotein gene is sufficient to confer differential responsiveness to wild-type and mutant p53 Oncogene 8 1529–1535 Occurrence Handle8502478 Occurrence Handle1:CAS:528:DyaK3sXltlKmt70%3D

    PubMed  CAS  Google Scholar 

Download references

Aknowledgments

This study was supported in part by a research grant R01CA97067 from the National Cancer Institute, NIH, DHHS. The excellent technical support of Jie Lu is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie L.-S. Au.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Y., Wientjes, M.G. & Au, J.LS. Expression of Basic Fibroblast Growth Factor Correlates with Resistance to Paclitaxel in Human Patient Tumors. Pharm Res 23, 1324–1331 (2006). https://doi.org/10.1007/s11095-006-0136-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-0136-6

Key Words

Navigation