Skip to main content

Advertisement

Log in

Adaptive Neuro-Fuzzy Modeling of Poorly Soluble Drug Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The purpose of this study was to evaluate the efficiency of a neuro-fuzzy logic-based methodology to model poorly soluble drug formulations and predict the development of the particle size that has been proven to be an important factor for long-term stability.

Methods

An adaptive neuro-fuzzy inference system was used to model the natural structures within the data and construct a set of fuzzy rules that can subsequently used as a predictive tool. The model was implemented in Matlab 6.5 and trained using 75% of an experimental data set. Subsequently, the model was evaluated and tested using the remaining 25%, and the predicted values of the particle size were compared to the ones from the experimental data. The produced adaptive neuro-fuzzy inference system-based model consisted of four inputs, i.e., acetone, propylene glycol, POE-5 phytosterol (BPS-5), and hydroxypropylmethylcellulose 90SH-50, with four membership functions each. Moreover, 256 fuzzy rules were employed in the model structure.

Results

Model training resulted in a root mean square error of 4.5 × 10−3, whereas model testing proved its highly predictive efficiency, achieving a correlation coefficient of 0.99 between the actual and the predicted values of the particle size (mean diameter).

Conclusions

Neuro-fuzzy modeling has been proven to be a realistic and promising tool for predicting the particle size of drug formulations with an easy and fast way, after proper training and testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANFIS:

adaptive neuro-fuzzy inference system

ANN:

artificial neural network

BPS-5:

PEG-5 soy sterol

EDM:

empirical-data-based model

FD:

factorial design

FL:

fuzzy logic

HPMC:

hydroxypropylmethylcellulose

\(In^{i}_{j} {\left( k \right)}\) :

j = 1,2,...,N i

\(k = 1,...,M_{i} ,i = 1,2i\) :

denotes the experimental phase, i.e., FD (i = 1) or RSM (i = 2), M i is the number of available data per causal factor, N i is the number of causal factors per experimental phase i, \(In^{i}_{j} {\left( k \right)}\) denotes the value of the causal factor j for the ith experimental phase and the kth experiment

IT:

infusion technique

M 25% :

the 25% of the available samples per causal factor denoting the size of the testing vector

M 75% :

the 75% of the available samples per causal factor denoting the size of the training vector

OXC:

oxcarbazepine

PIDS:

polarization intensity differential scattering

PSi(k), k = 1, ..., M i :

the particle size estimated at the ith experimental phase and the kth experiment

PSANFIS(k), k = 1, ..., M25%:

the particle size estimated by ANFIS for the kth experiment that belongs to the testing vector

PSANN(k), k = 1, ..., M25%:

the particle size estimated by ANN for the kth experiment that belongs to the testing vector

RMSE:

root mean-square error

RSM:

response surface methodology

References

  1. J.-Y. Cherng H. Talsma R. Verrijk D. J. A. Crommelin W. E. Hennink (1999) ArticleTitleThe effect of formulation parameters on the size of poly-((2-dimethylamino)ethyl methacrylate)–plasmid complexes Eur. J. Pharm. Biopharm. 47 215–224 Occurrence Handle10382105 Occurrence Handle1:CAS:528:DyaK1MXktVajur0%3D Occurrence Handle10.1016/S0939-6411(98)00103-9

    Article  PubMed  CAS  Google Scholar 

  2. G. G. Agyralides P. P. Dallas D. M. Rekkas (2004) ArticleTitleDevelopment and in vitro evaluation of furosemide transdermal formulations using experimental design techniques Int. J. Pharm. 281 35–43 Occurrence Handle15288341 Occurrence Handle1:CAS:528:DC%2BD2cXmtFCmurY%3D Occurrence Handle10.1016/j.ijpharm.2004.05.011

    Article  PubMed  CAS  Google Scholar 

  3. Y. Miyamoto S. Ogawa M. Miyajima M. Matsui H. Sato K. Takayama T. Nagai (1997) ArticleTitleAn application of the computer optimization technique to wet granulation process involving explosive growth of particles Int. J. Pharm. 149 25–36 Occurrence Handle1:CAS:528:DyaK2sXjsVClu7c%3D Occurrence Handle10.1016/S0378-5173(96)04853-3

    Article  CAS  Google Scholar 

  4. J. S. Chu G. L. Amidon N. D. Weiner A. H. Goldberg (1991) ArticleTitleMixture experimental design in the development of the muchoadhesive gel formulation Pharm. Res. 8 IssueID11 1401–1407 Occurrence Handle1798677 Occurrence Handle1:CAS:528:DyaK3MXms1egtL8%3D Occurrence Handle10.1023/A:1015853223929

    Article  PubMed  CAS  Google Scholar 

  5. J. M. Pean M. C. Venier-Julienne R. Filmon M. Sergent R. Phan-Tan-Luu J. P. Benoit (1998) ArticleTitleOptimization of HSA and NGF encapsulation yields in PLGA microparticles Int. J. Pharm. 166 105–115 Occurrence Handle1:CAS:528:DyaK1cXis1Wqsbw%3D Occurrence Handle10.1016/S0378-5173(98)00033-7

    Article  CAS  Google Scholar 

  6. Y. M. Wang H. Sato I. Adachi I. Horicoshi (1996) ArticleTitleOptimization of the formulation design of chitosan microspheres containing Cisplatin J. Pharm. Sci. 85 IssueID11 1204–1210 Occurrence Handle8923326 Occurrence Handle1:CAS:528:DyaK28XmtFKhtr0%3D Occurrence Handle10.1021/js960092j

    Article  PubMed  CAS  Google Scholar 

  7. C. M. Sancho R. H. Vanrell S. Negro (2004) ArticleTitleOptimisation of aciclovir poly(d,l-lactide-co-glycolide) microspheres for intravitreal administration using a factorial design study Int. J. Pharm. 273 45–56 Occurrence Handle10.1016/j.ijpharm.2003.12.006

    Article  Google Scholar 

  8. G. Derringer R. Suich (1980) ArticleTitleSimultaneous optimization of several response variables J. Qual. Technol. 12 214–219

    Google Scholar 

  9. A. I. Khuri M. Conlon (1981) ArticleTitleSimultaneous optimization of multiple responses by polynomial regression function Technometrics 23 365–375 Occurrence Handle10.2307/1268226

    Article  Google Scholar 

  10. A. D. McLeod F. C. Lam P. K. Gupta C. T. Hung (1988) ArticleTitleOptimized synthesis of polyglutaraldehyde nanoparticles using central composite design J. Pharm. Sci. 77 704–710 Occurrence Handle3145338 Occurrence Handle1:CAS:528:DyaL1cXlsFKit7o%3D

    PubMed  CAS  Google Scholar 

  11. B. G. Muller H. Leunberger T. Kissel (1996) ArticleTitleAlbumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique Pharm. Res. 13 IssueID1 32–37 Occurrence Handle8668675 Occurrence Handle1:STN:280:BymB387mslE%3D Occurrence Handle10.1023/A:1016064930502

    Article  PubMed  CAS  Google Scholar 

  12. D. C. Montgomery (2001) Response surface methods and other approaches to process optimization R. H. Myers D. C. Montgomery (Eds) Response Surface Methodology Wiley & Sons, Inc. New York 427–500

    Google Scholar 

  13. Y. Sun Y. Peng Y. Chen A. J. Shukla (2003) ArticleTitleApplication of artificial neural networks in the design of controlled release drug delivery systems Adv. Drug Deliv. Rev. 55 1201–1215 Occurrence Handle12954199 Occurrence Handle1:CAS:528:DC%2BD3sXmvVKqur0%3D Occurrence Handle10.1016/S0169-409X(03)00119-4

    Article  PubMed  CAS  Google Scholar 

  14. K. Takayama M. Fujikawa T. Nagai (1999) ArticleTitleArtificial neural network as a novel method to optimize pharmaceutical formulations Pharm. Res. 16 IssueID1 1–6 Occurrence Handle9950271 Occurrence Handle1:CAS:528:DyaK1MXmtlGntw%3D%3D

    PubMed  CAS  Google Scholar 

  15. K. Takayama M. Fujikawa Y. Obata M. Morishita (2003) ArticleTitleNeural network based optimization of drug formulations Adv. Drug Deliv. Rev. 55 1217–1231 Occurrence Handle12954200 Occurrence Handle1:CAS:528:DC%2BD3sXmvVKquro%3D Occurrence Handle10.1016/S0169-409X(03)00120-0

    Article  PubMed  CAS  Google Scholar 

  16. A. S. Achanta J. G. Kowalski C. T. Rhodes (1995) ArticleTitleArtificial neural networks: implications for pharmaceutical sciences Drug Dev. Ind. Pharm. 21 119–155 Occurrence Handle1:CAS:528:DyaK2MXjtlGmsro%3D

    CAS  Google Scholar 

  17. J.-S. R. Jang (1993) ArticleTitleANFIS: adaptive-network-based fuzzy inference systems IEEE Trans. Syst. Man Cybern. 23 665–685 Occurrence Handle10.1109/21.256541

    Article  Google Scholar 

  18. L. A. Zadeh (1965) ArticleTitleFuzzy sets Inf. Control 8 338–353 Occurrence Handle10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  19. A. K. Pannier R. M. Brand D. D. Jones (2003) ArticleTitleFuzzy modelling of skin permeability coefficients Pharm. Res. 20 IssueID2 143–148 Occurrence Handle12636150 Occurrence Handle1:CAS:528:DC%2BD3sXpslWjsA%3D%3D Occurrence Handle10.1023/A:1022273115847

    Article  PubMed  CAS  Google Scholar 

  20. T. J. Ross (1995) Fuzzy Logic with Engineering Applications McGraw-Hill, Inc. New York

    Google Scholar 

  21. T. Bernd M. Kleutges A. Kroll (1999) ArticleTitleNonlinear black box modelling—fuzzy networks versus neural networks Neural Comput. Appl. 8 151–162 Occurrence Handle10.1007/s005210050017

    Article  Google Scholar 

  22. A. Kroll (1996) ArticleTitleIdentification of functional fuzzy models using multidimensional reference fuzzy sets Fuzzy Sets Syst. 80 149–158 Occurrence Handle10.1016/0165-0114(95)00140-9

    Article  Google Scholar 

  23. G. L. Amidon H. Lunnernas V. P. Shah J. R. Crison (1995) ArticleTitleA theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vitro bioavailability Pharm. Res. 12 413–420 Occurrence Handle7617530 Occurrence Handle1:CAS:528:DyaK2MXksVGqur8%3D Occurrence Handle10.1023/A:1016212804288

    Article  PubMed  CAS  Google Scholar 

  24. M. Martinez L. Augsburger T. Johnston W. W. Jones (2002) ArticleTitleApplying the biopharmaceutics classification system to veterinary pharmaceutical products. Part I. Biopharmaceutics and formulation considerations Adv. Drug Deliv. Rev. 54 805–824 Occurrence Handle12363432 Occurrence Handle1:CAS:528:DC%2BD38XnsVSjtrg%3D Occurrence Handle10.1016/S0169-409X(02)00070-4

    Article  PubMed  CAS  Google Scholar 

  25. R. Löbenberg G. L. Amidon (2000) ArticleTitleModern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards Eur. J. Pharm. Biopharm. 50 3–12 Occurrence Handle10840189 Occurrence Handle10.1016/S0939-6411(00)00091-6

    Article  PubMed  Google Scholar 

  26. M. R. Violanto. Method for making uniformly particles from water-insoluble organic compounds. U.S. Pat. No. A-4,826,689.

  27. A. S. Noyes W. R. Whitney (1897) ArticleTitleThe rate of solution of solid substances in their own solutions J. Am. Chem. Soc. 19 930–934 Occurrence Handle10.1021/ja02086a003

    Article  Google Scholar 

  28. N. Rasenack B. W. Müller (2002) ArticleTitleDissolution rate enhancement by in-situ-micronization of poorly water-soluble drugs Pharm. Res. 19 IssueID12 1894–1900 Occurrence Handle12523671 Occurrence Handle1:CAS:528:DC%2BD38XpsVSjsbY%3D Occurrence Handle10.1023/A:1021410028371

    Article  PubMed  CAS  Google Scholar 

  29. N. Rasenack H. Steckel B. W. Muller (2003) ArticleTitleMicronization of anti-inflammatory drugs for pulmonary delivery by a controlled crystallization process J. Pharm. Sci. 92 IssueID1 35–44 Occurrence Handle12486680 Occurrence Handle1:CAS:528:DC%2BD3sXisVantg%3D%3D Occurrence Handle10.1002/jps.10274

    Article  PubMed  CAS  Google Scholar 

  30. S. L. Raghavan K. Schuessel A. Davis J. Hadgraft (2003) ArticleTitleFormation and stabilization of triclosan colloidal suspensions using supersaturated systems Int. J. Pharm. 261 153–158 Occurrence Handle12878404 Occurrence Handle1:CAS:528:DC%2BD3sXls1SqsL8%3D Occurrence Handle10.1016/S0378-5173(03)00299-0

    Article  PubMed  CAS  Google Scholar 

  31. G. Mie (1908) ArticleTitleBeiträge zur optik trüber medien, speziell kolloidaler metallösungen Ann. Phys. 25 377–445 Occurrence Handle1:CAS:528:DyaD1cXhtFWqtQ%3D%3D

    CAS  Google Scholar 

  32. U. M. Fayyad G. Piatetsky-Sapiro P. Smyth (1996) From data mining to knowledge discovery: an overview U. M. Fayyad G. Piatetsky-Sapiro P. Smyth R. Uthurusamy (Eds) Advances in Knowledge Discovery and Data Mining AAAI Press/MIT Press Menlo Park, CA 37–54

    Google Scholar 

  33. J.-S. R. Jang. Neuro-Fuzzy Modeling: architecture, analyses and applications, Ph.D. thesis, University of California, Berkeley, CA, 1992.

  34. L. H. Tsoukalas (1997) Fuzzy and Neural Approaches in Engineering Wiley & Sons. Inc. New York

    Google Scholar 

  35. Fuzzy Logic Toolbox User's Guide. Version 3, The Mathworks, Inc., Natick Massachusetts, 2003.

  36. Signal Processing Toolbox User's Guide. Version 3, The Mathworks, Inc., Natick Massachusetts, 2003.

  37. M. T. Hagan M. Menhaj (1994) ArticleTitleTraining feedforward networks with the Marquardt algorithm IEEE Trans. Neural Netw. 5 IssueID6 989–993 Occurrence Handle10.1109/72.329697

    Article  Google Scholar 

  38. Neural Networks Toolbox User's Guide. Version 3, The Mathworks, Inc., Natick Massachusetts, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionysios Douroumis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douroumis, D., Hadjileontiadis, L.J. & Fahr, A. Adaptive Neuro-Fuzzy Modeling of Poorly Soluble Drug Formulations. Pharm Res 23, 1157–1164 (2006). https://doi.org/10.1007/s11095-006-0021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-0021-3

Key Words

Navigation