Skip to main content

Advertisement

Log in

A Mechanism-Based Integrated Pharmacokinetic Enzyme Model Describing the Time Course and Magnitude of Phenobarbital-Mediated Enzyme Induction in the Rat

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To characterize the magnitude, time course, and specificity of phenobarbital (PB)-mediated enzyme induction, and further, to develop an integrated pharmacokinetic (PK)-enzyme model describing the changes in the activities of CYP enzymes as well as in the PK of PB.

Methods

PB plasma concentrations and in vitro activities of several CYP enzymes were measured in rats treated with PB between 0 and 14 days. A PB PK-enzyme induction model was developed using the program nonmem.

Results

PB treatment both induces and reduces the activity of CYP enzymes by stimulating the enzymes' formation or elimination rates. Certain CYP enzymes affected the PB PK through autoinduction. The half-life of the induction process was estimated to be 2 days for CYP1A2, CYP3A1/2, and CYP2B1/2, and 3 days for androstenedione producing enzymes. The CYP2C11 activity was rapidly reduced by PB treatment. A lag time for the PB autoinduction was observed. This lag time is explained by the rate difference between induction and reduction in CYP activities.

Conclusion

To our knowledge, this is the first example of an induction model that simultaneously describes plasma PK and in vitro data. It does so by integrating the bidirectional interaction between drug and enzymes in a mechanistic manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CYP:

cytochrome P450

EROD:

etoxyresorufin

i.p.:

intraperitoneal

k out :

turnover rate constant

OHT:

hydroxytestosterone

PB:

phenobarbital

PK:

pharmacokinetics

R in :

production rate

References

  1. R. H. Levy A. A. Lai M. S. Dumain (1979) ArticleTitleTime-dependent kinetics IV: pharmacokinetic theory of enzyme induction J. Pharm. Sci. 68 398–399 Occurrence Handle1:CAS:528:DyaE1MXhvFOrtrk%3D Occurrence Handle106109

    CAS  PubMed  Google Scholar 

  2. A. B. Okey (1990) ArticleTitleEnzyme induction in the cytochrome P-450 system Pharmacol. Ther. 45 241–298 Occurrence Handle10.1016/0163-7258(90)90030-6 Occurrence Handle1:CAS:528:DyaK3cXntFKrsA%3D%3D Occurrence Handle2405437

    Article  CAS  PubMed  Google Scholar 

  3. J. Y. Chien K. E. Thummel J. T. Slattery (1997) ArticleTitlePharmacokinetic consequences of induction of CYP2E1 by ligand stabilization Drug Metab. Dispos. 25 1165–1175 Occurrence Handle1:CAS:528:DyaK2sXmvVWnsLk%3D Occurrence Handle9321520

    CAS  PubMed  Google Scholar 

  4. A. V. Boddy M. Cole A. D. Pearson J. R. Idle (1995) ArticleTitleThe kinetics of the auto-induction of ifosfamide metabolism during continuous infusion Cancer Chemother. Pharmacol. 36 53–60 Occurrence Handle1:STN:280:ByqB3snls1A%3D Occurrence Handle7720176

    CAS  PubMed  Google Scholar 

  5. M. Hassan U. S. Svensson P. Ljungman B. Bjorkstrand H. Olsson M. Bielenstein M. Abdel-Rehim C. Nilsson M. Johansson M. O. Karlsson (1999) ArticleTitleA mechanism-based pharmacokinetic-enzyme model for cyclophosphamide autoinduction in breast cancer patients Br. J. Clin. Pharmacol. 48 669–677 Occurrence Handle10.1046/j.1365-2125.1999.00090.x Occurrence Handle1:CAS:528:DyaK1MXnvFSrsbs%3D Occurrence Handle10594468

    Article  CAS  PubMed  Google Scholar 

  6. C. Bahr Particlevon E. Steiner Y. Koike J. Gabrielsson (1998) ArticleTitleTime course of enzyme induction in humans: effect of pentobarbital on nortriptyline metabolism Clin. Pharmacol. Ther. 64 18–26

    Google Scholar 

  7. T. Kerbusch A. D. Huitema J. Ouwerkerk H. J. Keizer R. A. Mathot J. H. Schellens J. H. Beijnen (2000) ArticleTitleEvaluation of the autoinduction of ifosfamide metabolism by a population pharmacokinetic approach using nonmem Br. J. Clin. Pharmacol. 49 555–561 Occurrence Handle10.1046/j.1365-2125.2000.00217.x Occurrence Handle1:CAS:528:DC%2BD3cXks1Snsbw%3D Occurrence Handle10848719

    Article  CAS  PubMed  Google Scholar 

  8. B. Frame S. L. Beal (1998) ArticleTitleNon-steady state population kinetics of intravenous phenytoin Ther. Drug Monit. 20 408–416 Occurrence Handle10.1097/00007691-199808000-00010 Occurrence Handle1:CAS:528:DyaK1cXlsVSjtbc%3D Occurrence Handle9712466

    Article  CAS  PubMed  Google Scholar 

  9. T. Gordi R. Xie N. V. Huong D. X. Huong M. O. Karlsson M. Ashton (2005) ArticleTitleA semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction Br. J. Clin. Pharmacol. 59 189–198 Occurrence Handle10.1111/j.1365-2125.2004.02321.x Occurrence Handle1:CAS:528:DC%2BD2MXitFOgsLk%3D Occurrence Handle15676041

    Article  CAS  PubMed  Google Scholar 

  10. E. M. Bomhard U. Schmidt E. Loser (1998) ArticleTitleTime course of enzyme induction in liver and kidneys and absorption, distribution and elimination of 1,4-dichlorobenzene in rats Toxicology 131 73–91 Occurrence Handle10.1016/S0300-483X(98)00107-3 Occurrence Handle1:CAS:528:DyaK1cXnsFWqtLo%3D Occurrence Handle9928623

    Article  CAS  PubMed  Google Scholar 

  11. J. Meijer A. Bergstrand J. W. DePierre (1987) ArticleTitlePreparation and characterization of subcellular fractions from the liver of C57B1/6 mice, with special emphasis on their suitability for use in studies of epoxide hydrolase activities Biochem. Pharmacol. 36 1139–1151 Occurrence Handle10.1016/0006-2952(87)90425-4 Occurrence Handle1:CAS:528:DyaL2sXktF2rsLw%3D Occurrence Handle3566808

    Article  CAS  PubMed  Google Scholar 

  12. O. Lowry N. Rosebrough L. Farr R. Randall (1951) ArticleTitleProtein measurement with the Folin phenol reagent J. Biol. Chem. 193 265–275 Occurrence Handle1:CAS:528:DyaG38XhsVyrsw%3D%3D Occurrence Handle14907713

    CAS  PubMed  Google Scholar 

  13. K. Kushida K. Chiba T. Ishizaki (1983) ArticleTitleSimultaneous liquid chromatographic determination of chloramphenicol and antiepileptic drugs (phenobarbital, phenytoin, carbamazepine, and primidone) in plasma Ther. Drug Monit. 5 127–133 Occurrence Handle1:CAS:528:DyaL3sXitV2nurw%3D Occurrence Handle6845396

    CAS  PubMed  Google Scholar 

  14. I. Leclercq J. P. Desager C. Vandenplas Y. Horsmans (1996) ArticleTitleFast determination of low-level cytochrome P-450 1A1 activity by high-performance liquid chromatography with fluorescence or visible absorbance detection J. Chromatogr., B Biomed. Appl. 681 227–232 Occurrence Handle1:CAS:528:DyaK28XjvF2qtbw%3D

    CAS  Google Scholar 

  15. M. O. Magnusson R. Sandström (2004) ArticleTitleQuantitative analysis of eight testosterone metabolites using column switching and liquid chromatography/tandem mass spectrometry Rapid Commun. Mass Spectrom. 18 1089–1094 Occurrence Handle10.1002/rcm.1450 Occurrence Handle1:CAS:528:DC%2BD2cXks1yltb4%3D Occurrence Handle15150832

    Article  CAS  PubMed  Google Scholar 

  16. S. L. Bealand and L. S. Sheiner. NONMEM user's guide, NONMEM Project Group, University of California at San Francisco, 1994.

  17. E. N. Jonsson M. O. Karlsson (1999) ArticleTitleXpose-an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for nonmem Comput. Methods Programs Biomed. 58 51–64 Occurrence Handle1:STN:280:DyaK1M3htVShsw%3D%3D Occurrence Handle10195646

    CAS  PubMed  Google Scholar 

  18. Y. N. Sun D. C. DuBois R. R. Almon N. A. Pyszczynski W. J. Jusko (1998) ArticleTitleDose-dependence and repeated-dose studies for receptor/gene-mediated pharmacodynamics of methylprednisolone on glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver J. Pharmacokinet. Biopharm. 26 619–648 Occurrence Handle10.1023/A:1020746822634 Occurrence Handle1:CAS:528:DyaK1MXjvVCmtrc%3D Occurrence Handle10485078

    Article  CAS  PubMed  Google Scholar 

  19. A. D. Rodrigues R. A. Prough (1991) ArticleTitleInduction of cytochromes P450IA1 and P450IA2 and measurement of catalytic activities Methods Enzymol. 206 423–431 Occurrence Handle1:CAS:528:DyaK38XhsVGks70%3D Occurrence Handle1784227

    CAS  PubMed  Google Scholar 

  20. D. J. Waxman (1988) ArticleTitleInteractions of hepatic cytochromes P-450 with steroid hormones. Regioselectivity and stereospecificity of steroid metabolism and hormonal regulation of rat P-450 enzyme expression Biochem. Pharmacol. 37 71–84 Occurrence Handle10.1016/0006-2952(88)90756-3 Occurrence Handle1:CAS:528:DyaL1cXmvFSnsA%3D%3D Occurrence Handle3276320

    Article  CAS  PubMed  Google Scholar 

  21. S. Imaoka T. Yamada T. Hiroi K. Hayashi T. Sakaki Y. Yabusaki Y. Funae (1996) ArticleTitleMultiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat Biochem. Pharmacol. 51 1041–1050 Occurrence Handle10.1016/0006-2952(96)00052-4 Occurrence Handle1:CAS:528:DyaK28XitVOmtrY%3D Occurrence Handle8866826

    Article  CAS  PubMed  Google Scholar 

  22. A. J. Sonderfan M. P. Arlotto D. R. Dutton S. K. McMillen A. Parkinson (1987) ArticleTitleRegulation of testosterone hydroxylation by rat liver microsomal cytochrome P-450 Arch. Biochem. Biophys. 255 27–41 Occurrence Handle10.1016/0003-9861(87)90291-8 Occurrence Handle1:CAS:528:DyaL2sXkvFCjurs%3D Occurrence Handle3592665

    Article  CAS  PubMed  Google Scholar 

  23. D. E. Ryan W. Levin (1990) ArticleTitlePurification and characterization of hepatic microsomal cytochrome P-450 Pharmacol. Ther. 45 153–239 Occurrence Handle10.1016/0163-7258(90)90029-2 Occurrence Handle1:CAS:528:DyaK3cXltVKrtQ%3D%3D Occurrence Handle2405436

    Article  CAS  PubMed  Google Scholar 

  24. D. J. Waxman A. Ko C. Walsh (1983) ArticleTitleRegioselectivity and stereoselectivity of androgen hydroxylations catalyzed by cytochrome P-450 isozymes purified from phenobarbital-induced rat liver J. Biol. Chem. 258 11937–11947 Occurrence Handle1:CAS:528:DyaL3sXmtVylt74%3D Occurrence Handle6619150

    CAS  PubMed  Google Scholar 

  25. A. Parkinson P. E. Thomas D. E. Ryan W. Levin (1983) ArticleTitleThe in vivo turnover of rat liver microsomal epoxide hydrolase and both the apoprotein and heme moieties of specific cytochrome P-450 isozymes Arch. Biochem. Biophys. 225 216–236 Occurrence Handle1:CAS:528:DyaL3sXkvVGlsLc%3D Occurrence Handle6614919

    CAS  PubMed  Google Scholar 

  26. A. W. Wood D. C. Swinney P. E. Thomas D. E. Ryan P. F. Hall W. Levin W. A. Garland (1988) ArticleTitleMechanism of androstenedione formation from testosterone and epitestosterone catalyzed by purified cytochrome P-450b J. Biol. Chem. 263 17322–17332 Occurrence Handle1:CAS:528:DyaL1cXmt1alu7c%3D Occurrence Handle3053709

    CAS  PubMed  Google Scholar 

  27. K. Kobayashi K. Urashima N. Shimada K. Chiba (2002) ArticleTitleSubstrate specificity for rat cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat Biochem. Pharmacol. 63 889–896 Occurrence Handle10.1016/S0006-2952(01)00843-7 Occurrence Handle1:CAS:528:DC%2BD38XitFWlsrs%3D Occurrence Handle11911841

    Article  CAS  PubMed  Google Scholar 

  28. W. Levin P. E. Thomas D. E. Ryan A. W. Wood (1987) ArticleTitleIsozyme specificity of testosterone 7 alpha-hydroxylation in rat hepatic microsomes: is cytochrome P-450a the sole catalyst? Arch. Biochem. Biophys. 258 630–635 Occurrence Handle10.1016/0003-9861(87)90386-9 Occurrence Handle1:CAS:528:DyaL1cXjt1WgsA%3D%3D Occurrence Handle3674890

    Article  CAS  PubMed  Google Scholar 

  29. D. J. Waxman N. A. Pampori P. A. Ram A. K. Agrawal B. H. hapiro (1991) ArticleTitleInterpulse interval in circulating growth hormone patterns regulates sexually dimorphic expression of hepatic cytochrome P450 Proc. Natl. Acad. Sci. USA 88 6868–6872 Occurrence Handle1:CAS:528:DyaK3MXlt1Okt7w%3D Occurrence Handle1862110

    CAS  PubMed  Google Scholar 

  30. P. Reidenberg P. Glue C. R. Banfield R. D. Colucci J. W. Meehan E. Radwanski P. Mojavarian C. C. Lin J. Nezamis M. Guillaume M. B. Affrime (1995) ArticleTitleEffects of felbamate on the pharmacokinetics of phenobarbital Clin. Pharmacol. Ther. 58 279–287 Occurrence Handle10.1016/0009-9236(95)90244-9 Occurrence Handle1:CAS:528:DyaK2MXpsVSltL4%3D Occurrence Handle7554701

    Article  CAS  PubMed  Google Scholar 

  31. R. Riva F. Albani M. Contin A. Baruzzi (1996) ArticleTitlePharmacokinetic interaction between antiepileptic drugs Clin. Pharmacokinet. 31 470–493 Occurrence Handle1:CAS:528:DyaK2sXjt12rtA%3D%3D Occurrence Handle8968658

    CAS  PubMed  Google Scholar 

  32. G. D. Anderson (1998) ArticleTitleA mechanistic approach to antiepileptic drug interactions Ann. Pharmacother. 32 554–563 Occurrence Handle1:CAS:528:DyaK1cXjsVOksrY%3D Occurrence Handle9606477

    CAS  PubMed  Google Scholar 

  33. S. G. Paibir W. H. Soine D. F. Thomas R. A. Fisher (2004) ArticleTitlePhenobarbital N-glucosylation by human liver microsomes Eur. J. Drug Metab. Pharmacokinet. 29 IssueID1 51–59 Occurrence Handle1:CAS:528:DC%2BD2cXjvFyrsrk%3D Occurrence Handle15151171

    CAS  PubMed  Google Scholar 

  34. P. Bentley F. Oesch (1982) ArticleTitleForeign compound metabolism in the liver Prog. Liver Dis. 7 157–178 Occurrence Handle1:CAS:528:DyaL38Xlt1ClsrY%3D Occurrence Handle7051143

    CAS  PubMed  Google Scholar 

  35. I. S. Owens (1977) ArticleTitleGenetic regulation of UDP-glucuronosyltransferase induction by polycyclic aromatic compounds in mice. Co-segregation with aryl hydrocarbon (benzo(alpha)pyrene) hydroxylase induction J. Biol. Chem. 252 2827–2833 Occurrence Handle1:CAS:528:DyaE2sXksVymtr4%3D Occurrence Handle67114

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Britt Jansson for assistance in the laboratory and to Kjell Wikvall and Siv Jönsson for valuable comments on the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats O. Magnusson.

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnusson, M.O., Karlsson, M.O. & Sandström, R. A Mechanism-Based Integrated Pharmacokinetic Enzyme Model Describing the Time Course and Magnitude of Phenobarbital-Mediated Enzyme Induction in the Rat. Pharm Res 23, 521–532 (2006). https://doi.org/10.1007/s11095-005-9571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-9571-z

Key Words

Navigation