Skip to main content

Advertisement

Log in

Poly(Ethylene Oxide)-Modified Poly(β-Amino Ester) Nanoparticles as a pH-Sensitive System for Tumor-Targeted Delivery of Hydrophobic Drugs: Part 2. In Vivo Distribution and Tumor Localization Studies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

This study was carried out to determine the biodistribution profiles and tumor localization potential of poly(ethylene oxide) (PEO)-modified poly(β-amino ester) (PbAE) as a novel, pH-sensitive biodegradable polymeric nanoparticulate system for tumor-targeted drug delivery.

Methods

The biodistribution studies of PEO-modified PbAE and PEO-modified poly(ɛ-caprolactone) (PCL), a non-pH-sensitive polymer, nanoparticle systems were carried out in normal mice using 111indium-oxine [111In] as a lipophilic radiolabel encapsulated within the polymeric matrix, and the distribution of the nanoparticles was studied in plasma and all the vital organs following intravenous administration. Solid tumors were developed on nude mice using human ovarian carcinoma xenograft (SKOV-3) and the change in concentrations of tritium [3H]-labeled paclitaxel encapsulated in polymeric nanoparticles was examined in blood, tumor mass, and liver.

Results

Study in normal mice with a gamma-emitting isotope [111In] provided a thorough biodistribution analysis of the PEO-modified nanoparticulate carrier systems, whereas 3H-paclitaxel was useful to understand the change in concentration and tumor localization of anticancer compound directly in major sites of distribution. Both PEO-PbAE and PEO-PCL nanoparticles showed long systemic circulating properties by virtue of surface modification with PEO-containing triblock block copolymer (Pluronic®) stabilizer. Although the PCL nanoparticles showed higher uptake by the reticuloendothelial system, the PbAE nanoparticles effectively delivered the encapsulated payload into the tumor mass.

Conclusions

PEO-modified PbAE nanoparticles showed considerable passive tumor targeting potential in early stages of biodistribution via the enhanced permeation and retention (EPR) mechanism. This prompts a detailed biodistribution profiling of the nanocarrier for prolonged periods to provide conclusive evidence for superiority of the delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. M. Lynn D. G. Anderson A. Akinc R. Langer (2005) Deagradable poly(β-amino ester)s for gene delivery M. Amiji (Eds) Polymeric Gene Delivery: Principles and Applications CRC Press Boca Raton 227–241

    Google Scholar 

  2. D. M. Lynn D. G. Anderson D. Putnam R. Langer (2001) ArticleTitleAccelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library J. Am. Chem. Soc. 123 8155–8156 Occurrence Handle11506588 Occurrence Handle1:CAS:528:DC%2BD3MXlsVKisLo%3D Occurrence Handle10.1021/ja016288p

    Article  PubMed  CAS  Google Scholar 

  3. A. Akinc D. G. Anderson D. M. Lynn R. Langer (2003) ArticleTitleSynthesis of poly(beta-amino ester)s optimized for highly effective gene delivery Bioconjug. Chem. 14 979–988 Occurrence Handle13129402 Occurrence Handle10.1021/bc034067y Occurrence Handle1:CAS:528:DC%2BD3sXmsVyns70%3D

    Article  PubMed  CAS  Google Scholar 

  4. A. Akinc D. M. Lynn D. G. Anderson R. Langer (2003) ArticleTitleParallel synthesis and biophysical characterization of a degradable polymer library for gene delivery J. Am. Chem. Soc. 125 5316–5323 Occurrence Handle12720443 Occurrence Handle10.1021/ja034429c Occurrence Handle1:CAS:528:DC%2BD3sXivFagtrY%3D

    Article  PubMed  CAS  Google Scholar 

  5. A. Potineni D. M. Lynn R. Langer M. M. Amiji (2003) ArticleTitlePoly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery J. Control. Release 86 223–234 Occurrence Handle12526819 Occurrence Handle10.1016/S0168-3659(02)00374-7 Occurrence Handle1:CAS:528:DC%2BD3sXms1el

    Article  PubMed  CAS  Google Scholar 

  6. S. R. Little D. M. Lynn Q. Ge D. G. Anderson S. V. Puram J. Chen H. N. Eisen R. Langer (2004) ArticleTitlePoly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines Proc. Natl. Acad. Sci. USA 101 9534–9539 Occurrence Handle15210954 Occurrence Handle10.1073/pnas.0403549101 Occurrence Handle1:CAS:528:DC%2BD2cXlvVahs7o%3D

    Article  PubMed  CAS  Google Scholar 

  7. D. Berry D. M. Lynn R. Sasisekharan R. Langer (2004) ArticleTitlePoly(beta-amino ester)s promote cellular uptake of heparin and cancer cell death Chem. Biol. 11 487–498 Occurrence Handle15123243 Occurrence Handle10.1016/j.chembiol.2004.03.023 Occurrence Handle1:CAS:528:DC%2BD2cXjt1Cmsrg%3D

    Article  PubMed  CAS  Google Scholar 

  8. D. M. Lynn M. M. Amiji R. Langer (2001) ArticleTitlepH-responsive polymer microspheres: rapid release of encapsulated material within the range of intracellular pH Angew. Chem., Int. Ed. Engl. 40 1707–1710 Occurrence Handle10.1002/1521-3773(20010504)40:9<1707::AID-ANIE17070>3.0.CO;2-F Occurrence Handle1:CAS:528:DC%2BD3MXjslCgsrg%3D

    Article  CAS  Google Scholar 

  9. C. G. Pitt T. A. Marks A. Schindler (1981) ArticleTitleBiodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists NIDA Res. Monogr. 28 232–253 Occurrence Handle6791007 Occurrence Handle1:CAS:528:DyaL3MXlvFahu78%3D

    PubMed  CAS  Google Scholar 

  10. C. G. Pitt M. M. Gratzl G. L. Kimmel J. Surles A. Schindler (1981) ArticleTitleAliphatic polyesters: II. The degradation of poly(dl-lactide), poly(epsilon-caprolactone), and their copolymers invivo Biomaterials 2 215–220 Occurrence Handle7326315 Occurrence Handle10.1016/0142-9612(81)90060-0 Occurrence Handle1:CAS:528:DyaL38XktVymtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  11. C. G. Pitt A. R. Jeffcoat R. A. Zweidinger A. Schindler (1979) ArticleTitleSustained drug delivery systems: I. The permeability of poly(epsilon-caprolactone), poly(dl-lactic acid), and their copolymers J. Biomed. Mater. Res. 13 497–507 Occurrence Handle438232 Occurrence Handle10.1002/jbm.820130313 Occurrence Handle1:CAS:528:DyaE1MXktV2nt7w%3D

    Article  PubMed  CAS  Google Scholar 

  12. C. G. Pitt M. M. Gratzl A. R. Jeffcoat R. Zweidinger A. Schindler (1979) ArticleTitleSustained drug delivery systems: II. Factors affecting release rates from poly(epsilon-caprolactone) and related biodegradable polyesters J. Pharm. Sci. 68 1534–1538 Occurrence Handle529046 Occurrence Handle1:CAS:528:DyaL3cXpvFGhtA%3D%3D Occurrence Handle10.1002/jps.2600681219

    Article  PubMed  CAS  Google Scholar 

  13. Y. Cha C. G. Pitt (1990) ArticleTitleThe biodegradability of polyester blends Biomaterials 11 108–112 Occurrence Handle2317532 Occurrence Handle10.1016/0142-9612(90)90124-9 Occurrence Handle1:CAS:528:DyaK3cXitVClsbg%3D

    Article  PubMed  CAS  Google Scholar 

  14. V. R. Sinha L. Khosla (1998) ArticleTitleBioabsorbable polymers for implantable therapeutic systems Drug Dev. Ind. Pharm. 24 1129–1138 Occurrence Handle9876570 Occurrence Handle1:CAS:528:DyaK1cXnvFWqurc%3D Occurrence Handle10.3109/03639049809108572

    Article  PubMed  CAS  Google Scholar 

  15. M. C. Varela M. Guzman J. Molpeceres M. Rosario Aberturas Particledel D. Rodriguez-Puyol M. Rodriguez-Puyol (2001) ArticleTitleCyclosporine-loaded polycaprolactone nanoparticles: immunosuppression and nephrotoxicity in rats Eur. J. Pharm. Sci. 12 471–478 Occurrence Handle11231114 Occurrence Handle1:CAS:528:DC%2BD3MXkslyjs7g%3D Occurrence Handle10.1016/S0928-0987(00)00198-6

    Article  PubMed  CAS  Google Scholar 

  16. J. S. Chawla M. M. Amiji (2003) ArticleTitleCellular uptake and concentrations of tamoxifen upon administration in poly(epsilon-caprolactone) nanoparticles AAPS PharmSci 5 IssueID1 E3 Occurrence Handle12713275 Occurrence Handle10.1208/ps050103

    Article  PubMed  Google Scholar 

  17. D. B. Shenoy M. M. Amiji (2005) ArticleTitlePoly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery oftamoxifen in breast cancer Int. J. Pharm. 293 261–270 Occurrence Handle15778064 Occurrence Handle10.1016/j.ijpharm.2004.12.010 Occurrence Handle1:CAS:528:DC%2BD2MXitlSgtbY%3D

    Article  PubMed  CAS  Google Scholar 

  18. Y. Y. Jiao N. Ubrich M. Marchand-Arvier C. Vigneron M. Hoffman P. Maincent (2001) ArticleTitlePreparation and in vitro evaluation of heparin-loaded polymeric nanoparticles Drug Deliv. 8 135–141 Occurrence Handle11570593 Occurrence Handle10.1080/107175401316906892 Occurrence Handle1:CAS:528:DC%2BD3MXmvFGjsLs%3D

    Article  PubMed  CAS  Google Scholar 

  19. R. Gref M. Luck P. Quellec M. Marchand E. Dellacherie S. Harnisch T. Blunk R. H. Muller (2000) ArticleTitle‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption Colloids Surf., B Biointerfaces 18 301–313 Occurrence Handle10.1016/S0927-7765(99)00156-3 Occurrence Handle1:CAS:528:DC%2BD3cXltVOltbo%3D

    Article  CAS  Google Scholar 

  20. M. R. Williamson H. I. Chang A. G. Coombes (2004) ArticleTitleGravity spun polycaprolactone fibres: controlling release of a hydrophilic macromolecule (ovalbumin) and a lipophilic drug (progesterone) Biomaterials 25 5053–5060 Occurrence Handle15109868 Occurrence Handle1:CAS:528:DC%2BD2cXjtlymtL0%3D Occurrence Handle10.1016/j.biomaterials.2004.02.027

    Article  PubMed  CAS  Google Scholar 

  21. L. Marchal-Heussler D. Sirbat M. Hoffman P. Maincent (1993) ArticleTitlePoly(epsilon-caprolactone) nanocapsules in carteolol ophthalmic delivery Pharm. Res. 10 386–390 Occurrence Handle8464811 Occurrence Handle1:CAS:528:DyaK3sXhvFyisrs%3D Occurrence Handle10.1023/A:1018936205485

    Article  PubMed  CAS  Google Scholar 

  22. K. S. Soppimath T. M. Aminabhavi A. R. Kulkarni W. E. Rudzinski (2001) ArticleTitleBiodegradable polymeric nanoparticles as drug delivery devices J. Control. Release 70 1–20 Occurrence Handle11166403 Occurrence Handle10.1016/S0168-3659(00)00339-4 Occurrence Handle1:CAS:528:DC%2BD3MXovV2rtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  23. S. M. Moghimi A. C. Hunter J. C. Murray (2001) ArticleTitleLong-circulating and target-specific nanoparticles: theory to practice Pharmacol. Rev. 53 283–318 Occurrence Handle11356986 Occurrence Handle1:CAS:528:DC%2BD3MXkt1Gnurc%3D

    PubMed  CAS  Google Scholar 

  24. M. J. Alonso (2001) ArticleTitlePolymeric nanoparticles: new systems for improving ocular bioavailability of drugs Arch. Soc. Esp. Oftalmol. 76 453–454 Occurrence Handle11484135 Occurrence Handle1:STN:280:DC%2BD3Mrlt1akuw%3D%3D

    PubMed  CAS  Google Scholar 

  25. R. H. Muller K. Mader S. Gohla (2000) ArticleTitleSolid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art Eur. J. Pharm. Biopharm. 50 161–177 Occurrence Handle10840199 Occurrence Handle1:CAS:528:DC%2BD3cXjslyisrg%3D Occurrence Handle10.1016/S0939-6411(00)00087-4

    Article  PubMed  CAS  Google Scholar 

  26. T. Jung W. Kamm A. Breitenbach E. Kaiserling J. X. Xiao T. Kissel (2000) ArticleTitleBiodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 50 147–160 Occurrence Handle10840198 Occurrence Handle1:CAS:528:DC%2BD3cXjslyisrs%3D Occurrence Handle10.1016/S0939-6411(00)00084-9

    Article  PubMed  CAS  Google Scholar 

  27. J. Kreuter (1996) ArticleTitleNanoparticles and microparticles for drug and vaccine delivery J. Anat. 189 IssueIDPt 3 503–505 Occurrence Handle8982823 Occurrence Handle1:CAS:528:DyaK2sXlvVOrtw%3D%3D

    PubMed  CAS  Google Scholar 

  28. J. Kreuter (1994) ArticleTitleDrug targeting with nanoparticles Eur. J. Drug Metab. Pharmacokinet. 19 253–256 Occurrence Handle7867668 Occurrence Handle1:CAS:528:DyaK2MXitlSjt7o%3D Occurrence Handle10.1007/BF03188928

    Article  PubMed  CAS  Google Scholar 

  29. M. Ravi Kumar G. Hellermann R. F. Lockey S. S. Mohapatra (2004) ArticleTitleNanoparticle-mediated gene delivery: state of the art Exp. Opin. Biol. Ther. 4 1213–1224 Occurrence Handle1:STN:280:DC%2BD2czmsVOiug%3D%3D Occurrence Handle10.1517/14712598.4.8.1213

    Article  CAS  Google Scholar 

  30. J. Panyam V. Labhasetwar (2003) ArticleTitleBiodegradable nanoparticles for drug and gene delivery to cells and tissue Adv. Drug Deliv. Rev. 55 329–347 Occurrence Handle12628320 Occurrence Handle10.1016/S0169-409X(02)00228-4 Occurrence Handle1:CAS:528:DC%2BD3sXhs1Cgurw%3D

    Article  PubMed  CAS  Google Scholar 

  31. C. Vauthier C. Dubernet E. Fattal H. Pinto-Alphandary P. Couvreur (2003) ArticleTitlePoly(alkylcyanoacrylates) as biodegradable materials for biomedical applications Adv. Drug Deliv. Rev. 55 519–548 Occurrence Handle12706049 Occurrence Handle10.1016/S0169-409X(03)00041-3 Occurrence Handle1:CAS:528:DC%2BD3sXivV2qs7c%3D

    Article  PubMed  CAS  Google Scholar 

  32. A. T. Florence N. Hussain (2001) ArticleTitleTranscytosis of nanoparticle and dendrimer delivery systems: evolving vistas Adv. Drug Deliv. Rev. 50 IssueIDSuppl. 1 S69–S89 Occurrence Handle11576696 Occurrence Handle1:CAS:528:DC%2BD3MXntVWku78%3D Occurrence Handle10.1016/S0169-409X(01)00184-3

    Article  PubMed  CAS  Google Scholar 

  33. P. P. Speiser (1991) ArticleTitleNanoparticles and liposomes: a state of the art Methods Find. Exp. Clin. Pharmacol. 13 337–342 Occurrence Handle1921570 Occurrence Handle1:STN:280:DyaK38%2Fhs1KqtA%3D%3D

    PubMed  CAS  Google Scholar 

  34. J. M. Benns S. W. Kim (2000) ArticleTitleTailoring new gene delivery designs for specific targets J. Drug Target. 8 1–12 Occurrence Handle10761641 Occurrence Handle1:CAS:528:DC%2BD3cXit1Knsb4%3D Occurrence Handle10.3109/10611860009009205

    Article  PubMed  CAS  Google Scholar 

  35. S. J. Douglas S. S. Davis L. Illum (1987) ArticleTitleNanoparticles in drug delivery Crit. Rev. Ther. Drug Carrier Syst. 3 233–261 Occurrence Handle3549008 Occurrence Handle1:CAS:528:DyaL2sXht1Gksbc%3D

    PubMed  CAS  Google Scholar 

  36. H. Otsuka Y. Nagasaki K. Kataoka (2003) ArticleTitlePEGylated nanoparticles for biological and pharmaceutical applications Adv. Drug Deliv. Rev. 55 403–419 Occurrence Handle12628324 Occurrence Handle10.1016/S0169-409X(02)00226-0 Occurrence Handle1:CAS:528:DC%2BD3sXhs1Cgurg%3D

    Article  PubMed  CAS  Google Scholar 

  37. J. S. Tan D. E. Butterfield C. L. Voycheck K. D. Caldwell J. T. Li (1993) ArticleTitleSurface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats Biomaterials 14 823–833 Occurrence Handle8218736 Occurrence Handle1:CAS:528:DyaK2cXhtFKltL0%3D Occurrence Handle10.1016/0142-9612(93)90004-L

    Article  PubMed  CAS  Google Scholar 

  38. L. Nobs F. Buchegger R. Gurny E. Allemann (2003) ArticleTitleSurface modification of poly(lactic acid) nanoparticles by covalent attachment of thiol groups by means of three methods Int. J. Pharm. 250 327–337 Occurrence Handle12527160 Occurrence Handle10.1016/S0378-5173(02)00542-2 Occurrence Handle1:CAS:528:DC%2BD3sXis1Wntg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  39. G. Kaul M. Amiji (2002) ArticleTitleLong-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery Pharm. Res. 19 1061–1067 Occurrence Handle12180540 Occurrence Handle10.1023/A:1016486910719 Occurrence Handle1:CAS:528:DC%2BD38Xltl2isbg%3D

    Article  PubMed  CAS  Google Scholar 

  40. J. K. Gbadamosi A. C. Hunter S. M. Moghimi (2002) ArticleTitlePEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance FEBS Lett. 532 338–344 Occurrence Handle12482589 Occurrence Handle10.1016/S0014-5793(02)03710-9 Occurrence Handle1:CAS:528:DC%2BD38XptlCqtLs%3D

    Article  PubMed  CAS  Google Scholar 

  41. D. Bhadra S. Bhadra P. Jain N. K. Jain (2002) ArticleTitlePegnology: areview of PEG-ylated systems Pharmazie 57 5–29 Occurrence Handle11836932 Occurrence Handle1:CAS:528:DC%2BD38XnslyhsQ%3D%3D

    PubMed  CAS  Google Scholar 

  42. N. Csaba L. Gonzalez A. Sanchez M. J. Alonso (2004) ArticleTitleDesign and characterisation of new nanoparticulate polymer blends fordrug delivery J. Biomater. Sci., Polym. Ed. 15 1137–1151 Occurrence Handle10.1163/1568562041753098 Occurrence Handle1:CAS:528:DC%2BD2cXptFahurw%3D

    Article  CAS  Google Scholar 

  43. N. Csaba P. Caamano A. Sanchez F. Dominguez M. J. Alonso (2005) ArticleTitlePLGA:poloxamer and PLGA:poloxamine blend nanoparticles: new carriers for gene delivery Biomacromolecules 6 271–278 Occurrence Handle15638530 Occurrence Handle10.1021/bm049577p Occurrence Handle1:CAS:528:DC%2BD2cXhtVCntbvM

    Article  PubMed  CAS  Google Scholar 

  44. D. B. Shenoy, S. Little, R. Langer, and M. M. Amiji. Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-Sensitive system for tumor-targeted delivery of hydrophobic drugs: 1. In Vitro evaluations. Mol. Pharm. in press (2005).

  45. F. Kedzierewicz P. Thouvenot I. H. Monot P. Maincent (1998) ArticleTitleInfluence of different physicochemical conditions on the release of indium oxine from nanocapsules J. Biomed. Mater. Res. 39 588–593 Occurrence Handle9492220 Occurrence Handle10.1002/(SICI)1097-4636(19980315)39:4<588::AID-JBM13>3.0.CO;2-3 Occurrence Handle1:CAS:528:DyaK1cXptFWmsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  46. L. Marchal-Heussler P. Thouvenot M. Hoffman P. Maincent (1999) ArticleTitleComparison of the biodistribution in mice of 111indium oxine encapsulated intopoly(lactic-co-glycolic)-d,l-85/15 and poly(epsilon caprolactone) nanocapsules J. Pharm. Sci. 88 450–453 Occurrence Handle10187756 Occurrence Handle10.1021/js980307k Occurrence Handle1:CAS:528:DyaK1MXhs1eksL8%3D

    Article  PubMed  CAS  Google Scholar 

  47. R. D. Wochner M. Adatepe A. Amburg ParticleVan E. J. Potchen (1970) ArticleTitleA new method for estimation of plasma volume with the use of the distribution space of indium-113m-transferrin J. Lab. Clin. Med. 75 711–720 Occurrence Handle5439670 Occurrence Handle1:STN:280:DyaE3c7mtlWhsA%3D%3D

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Cancer Institute grant R01-CA095522 from the National Institutes of Health. The authors thank Professor Robert Campbell for the particle size and zeta potential measurements, Professor Richard Deth for the liquid scintillation counter, and Dr. Ralph Loring for the gamma counter. Dr. Michael Seiden and Dr. Duan Zhenfeng of Massachusetts General Hospital are thanked for providing the SKOV-3 tumor cell lines. Dr. Ananthsrinivas Chakilam is acknowledged for his help in carrying out the noncompartmental pharmacokinetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shenoy, D., Little, S., Langer, R. et al. Poly(Ethylene Oxide)-Modified Poly(β-Amino Ester) Nanoparticles as a pH-Sensitive System for Tumor-Targeted Delivery of Hydrophobic Drugs: Part 2. In Vivo Distribution and Tumor Localization Studies. Pharm Res 22, 2107–2114 (2005). https://doi.org/10.1007/s11095-005-8343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-8343-0

Key Words

Navigation