Purpose
Protein aggregation is a major stability problem of therapeutic proteins. We investigated whether a novel stabilizing peptide [acidic tail of synuclein (ATS) peptide] could be generally used to make a more stable and soluble form of therapeutic proteins, particularly those having solubility or aggregation problems.
Methods
We produced ATS fusion proteins by fusing the stabilizing peptide to three representative therapeutic proteins, and then compared the stress-induced aggregation profiles, thermostability, and solubility of them. We also compared the in vivo stability of these ATS fusion proteins by studying their pharmacokinetics in rats.
Results
The human growth hormone–ATS (hGH–ATS) and granulocyte colony-stimulating factor–ATS (G-CSF–ATS) fusion proteins were fully functional as determined by cell proliferation assay, and the ATS fusion proteins seemed to be very resistant to agitation, freeze/thaw, and heat stresses. The introduction of the ATS peptide significantly increased the storage and thermal stabilities of hGH and G-CSF. The human leptin–ATS fusion protein also seemed to be very resistant to aggregation induced by agitation, freeze/thaw, and heat stresses. Furthermore, the ATS peptide greatly increased the solubility of the fusion proteins. Finally, pharmacokinetic studies in rats revealed that the ATS fusion proteins are also more stable in vivo.
Conclusion
Our data demonstrate that a more stable and soluble form of therapeutic proteins can be produced by fusing the ATS peptide.
This is a preview of subscription content, access via your institution.







Abbreviations
- ATS:
-
acidic tail of synuclein
- CD:
-
circular dichroism
- G-CSF:
-
granulocyte colony-stimulating factor
- GST:
-
glutathione S-transferase
- hGH:
-
human growth hormone
- Tm:
-
melting temperature
- Tu:
-
temperature for the onset of unfolding
References
- 1.
J. F. Carpenter B. S. Kendrick B. S. Chang M. C. Manning T. W. Randolph (1999)
Inhibition of stress-induced aggregation of protein therapeutics Methods Enzymol. 309 237–255 - 2.
J. L. Cleland M. F. Powell S. J. Shire (1993)
The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation Crit. Rev. Ther. Drug Carr. Syst. 10 307–377 - 3.
M. C. Manning K. Patel R. T. Borchardt (1989)
Stability of protein pharmaceuticals Pharm. Res. 6 903–918 10.1023/A:1015929109894 2687836 - 4.
A. Braun L. Kwee M. A. Labow J. Alsenz (1997)
Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-α) in normal and transgenic mice Pharm. Res. 14 1472–1478 10.1023/A:1012193326789 9358564 - 5.
W. V. Moore P. Leppert (1980)
Role of aggregated human growth hormone (hGH) in development of antibodies to hGH J. Clin. Endocrinol. Metab. 51 691–697 7419661 - 6.
C. A. Thornton M. Ballow (1993)
Safety of intravenous immunoglobulin Arch. Neurol. 50 135–136 8431130 - 7.
R. E. Ratner T. M. Phillips M. Steiner (1990)
Persistent cutaneous insulin allergy resulting from high-molecular-weight insulin aggregates Diabetes 39 728–733 2189764 - 8.
D. C. Robbins S. M. Cooper S. E. Fineberg P. M. Mead (1987)
Antibodies to covalent aggregates of insulin in blood of insulin-using diabetic patients Diabetes 36 838–841 2438179 - 9.
P. Talaga (2001)
Beta-amyloid aggregation inhibitors for the treatment of Alzheimer's disease: dream or reality? Mini Rev. Med. Chem. 1 175–186 10.2174/1389557013407098 12369982 - 10.
C. Schlieker B. Bukau A. Mogk (2002)
Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology J. Biotechnol. 96 13–21 10.1016/S0168-1656(02)00033-0 12142139 - 11.
M. Katakam A. K. Banga (1997)
Use of poloxamer polymers to stabilize recombinant human growth hormone against various processing stresses Pharm. Dev. Technol. 2 143–149 9552440 - 12.
M. Katakam L. N. Bell A. K. Banga (1995)
Effect of surfactants on the physical stability of recombinant human growth hormone J. Pharm. Sci. 84 713–716 7562409 - 13.
M. E. Brewster M. S. Hora J. W. Simpkins N. Bodor (1991)
Use of 2-hydroxypropyl-b-cyclodextrin as a solubilizing and stabilizing excipient for protein drugs Pharm. Res. 8 792–795 10.1023/A:1015870521744 2062811 - 14.
D. E. Otzen B. R. Knudsen F. Aachmann K. L. Larsen R. Wimmer (2002)
Structural basis of cyclodextrins' suppression of human growth hormone aggregation Protein Sci. 11 1779–1787 10.1110/ps.0202702 12070330 - 15.
L. Bam J. L. Cleland J. Yang M. C. Manning J. F. Carpenter R. F. Kelly T. W. Randolph (1998)
Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions J. Pharm. Sci. 87 1554–1559 10.1021/js980175v 10189266 - 16.
A. V. Filikov R. J. Hayes P. Luo D. M. Stark C. Chan A. Kundu B. I. Dahiyat (2002)
Computational stabilization of human growth hormone Protein Sci. 11 1452–1461 10.1110/ps.3500102 12021444 - 17.
A. A. Schulga A. A. Markarov I. V. Levichkin L. Y. Belousova V. M. Labachov I. I. Protasevich C. N. Pace M. P. Kiroichnikov (2002)
Increased stability of human growth hormone with reduced lactogenic potency FEBS Lett. 528 257–260 10.1016/S0014-5793(02)03325-2 12297316 - 18.
S. M. Park H. Y. Jung K. C. Chung H. Rhim J. H. Park J. Kim (2002)
Stress-induced aggregation profiles of GST-α-synuclein fusion proteins: role of the C-terminal acidic tail of α-synuclein in protein thermosolubility and stability Biochemistry 41 4137–4146 10.1021/bi015961k 11900557 - 19.
S. M. Park K. J. Ahn H. Y. Jung J. H. Park J. Kim (2004)
Effects of novel peptides derived from the acidic tail of synuclein (ATS) on the aggregation and stability of fusion proteins Protein Eng. Des. Sel. 17 251–260 10.1093/protein/gzh029 15067107 - 20.
J. Kim Y. J. Chwae M. Y. Kim I. H. Choi J. H. Park S. J. Kim (1997)
Molecular basis of HLA-C recognition by p58 natural killer cell inhibitory receptors J. Immunol. 159 3875–3882 9378975 - 21.
A. K. Patra R. Mukhopadhyay R. Mukhija A. Krishnan L. C. Garg A. K. Panda (2000)
Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli Protein Expr. Purif. 18 182–192 10.1006/prep.1999.1179 10686149 - 22.
D. V. Goeddel H. L. Heynecker T. Hozumi R. Arentzen K. Itakura D. G. Yansura M. J. Ross G. Miozzari R. Crea P. H. Seeburg (1979)
Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone Nature 281 544–548 10.1038/281544a0 386136 - 23.
M. H. Ultsch W. Somers A. A. Kossiakoff A. M. Vos
De (1994) The crystal structure of affinity-matured human growth hormone at 2 A resolution J. Mol. Biol. 236 286–299 10.1006/jmbi.1994.1135 8107110 - 24.
E. A. Zhukovsky M. G. Mulkerrin L. G. Presta (1994)
Contribution to global protein stabilization of the N-capping box in human growth hormone Biochemistry 33 9856–9864 10.1021/bi00199a006 8060992 - 25.
F. C. Peterson C. L. Brooks (1997)
Identification of a motif associated with the lactogenic actions of human growth hormone J. Biol. Chem. 272 21444–21448 10.1074/jbc.272.34.21444 9261160 - 26.
T. Tanaka R. P. Shiu P. W. Gout C. T. Beer R. L. Noble H. G. Friesen (1980)
A new sensitive and specific bioassay for lactogenic hormones: measurement of prolactin and growth hormone in human serum J. Clin. Endocrinol. Metab. 51 1058–1063 7419681 - 27.
M. T. Dattani P. C. Hindmarsh C. G. D. Brook I. C. Robinson J. J. Kopchick N. J. Marshall (1995)
G120R, a human growth hormone antagonist, shows zinc-dependent agonist and antagonist activity on Nb2 cells J. Biol. Chem. 270 9222–9226 10.1074/jbc.270.16.9222 7721840 - 28.
Y. F. Maa C. C. Hsu (1997)
Protein denaturation by combined effect of shear and air–liquid interface Biotechnol. Bioeng. 54 503–512 10.1002/(SICI)1097-0290(19970620)54:6<503::AID-BIT1>3.0.CO;2-N - 29.
B. M. Eckhardt J. Q. Oeswein T. A. Bewley (1991)
Effect of freezing on aggregation of human growth hormone Pharm. Res. 8 1360–1364 10.1023/A:1015888704365 1798670 - 30.
S. A. Charman M. L. Mason W. N. Charman (1993)
Techniques for assessing the effects of pharmaceutical excipients on the aggregation of porcine growth hormone Pharm. Res. 10 954–962 10.1023/A:1018994102218 8378257 - 31.
P. Luo R. J. Hayes C. Chan D. M. Stark M. Y. Hwang J. M. Jacinto P. Juvvadi H. S. Chung A. Keundu M. L. Ary B. I. Dahiyat (2002)
Development of a cytokine analog with enhanced stability using computational ultrahigh throughput screening Protein Sci. 11 1218–1226 10.1110/ps.4580102 11967378 - 32.
B. Bishop D. C. Koay A. C. Sartorelli L. Regan (2001)
Reengineering granulocyte colony-stimulating factor for enhanced stability J. Biol. Chem. 276 33465–33470 10.1074/jbc.M104494200 11406632 - 33.
M. J. Treuheit A. A. Kosky D. N. Brems (2002)
Inverse relationship of protein concentration and aggregation Pharm. Res. 19 511–516 10.1023/A:1015108115452 12033388 - 34.
F. Zhang M. B. Basinski J. M. Beals S. L. Briggs L. M. Churgay D. K. Clawson R. D. DiMarchi T. C. Furman J. E. Hale H. M. Hsiung B. E. Schoner D. P. Smith X. Y. Zhang J. P. Wery R. W. Schevitz (1997)
Crystal structure of the obese protein leptin-E100 Nature 387 206–209 10.1038/387206a0 9144295 - 35.
C. Tanford (1961) Physical Chemistry of Macromolecules John Wiley and Sons, Inc. New York
- 36.
S. J. Shire Z. Shahrokh J. Liu (2004)
Challenges in the development of high protein concentration formulations J. Pharm. Sci. 93 1390–1402 10.1002/jps.20079 15124199 - 37.
C. B. Lucking A. Brice (2000)
α-Synuclein and Parkinson's disease Cell. Mol. Life Sci. 57 1894–1908 11215516 - 38.
S. M. Park H. Y. Jung T. D. Kim J. H. Park C. H. Yang J. Kim (2002)
Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of α-synuclein, a molecular chaperone J. Biol. Chem. 277 28512–28520 10.1074/jbc.M111971200 12032141 - 39.
W. Wang (2000)
Lyophilization and development of solid protein pharmaceuticals Int. J. Pharm. 203 1–60 10.1016/S0378-5173(00)00423-3 10967427 - 40.
W. Wang (1999)
Instability, stabilization, and formation of liquid protein pharmaceuticals Int. J. Pharm. 185 129–188 10.1016/S0378-5173(99)00152-0 10460913 - 41.
H. S. Lu C. L. Clogston L. O. Narhi L. A. Merewether W. R. Pearl T. C. Boone (1992)
Folding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli: Characterization of the disulfide-reduced intermediates and cysteine-serine analogs J. Biol. Chem. 267 8770–8777 1374379 - 42.
K. J. Jeong S. Y. Lee (1999)
High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification Appl. Environ. Microbiol. 65 3027–3032 10388699 - 43.
T. D. Kim H. J. Ryu H. I. Cho C. H. Yang J. Kim (2000)
Thermal behavior of proteins: heat-resistant proteins and their heat-induced secondary structural changes Biochemistry 39 14839–14846 10.1021/bi001441y 11101300 - 44.
M. M. Bradford (1976)
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem. 72 248–254 942051 - 45.
M. Okabe M. Asano Y. Komatsu M. Yamasaki Y. Yokoo S. Itoh M. Morimoto T. Oka (1990)
In vitro and in vivo hematopoietic effect of mutant human granulocyte colony-stimulating factor Blood 75 1788–1793 1691933 - 46.
B. L. Osborn L. Sekut M. Corcoran C. Poortman B. Sturm G. Chen D. Mather H. L. Lin T. J. Parry (2002)
Albutropin: a growth hormone-albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys Eur. J. Pharmacol. 456 149–158 10.1016/S0014-2999(02)02644-4 12450581
Acknowledgments
We thank Dr. S.M. Park and K.J. Ahn for their technical assistance. This work was supported in part by a grant (R13-2002-054-02002-0) from the basic research program of the KOSEF.
Author information
Affiliations
Corresponding author
Additional information
E. N. Lee and Y. M. Kim equally contributed to this work.
Rights and permissions
About this article
Cite this article
Lee, E.N., Kim, Y.M., Lee, H.J. et al. Stabilizing Peptide Fusion for Solving the Stability and Solubility Problems of Therapeutic Proteins. Pharm Res 22, 1735–1746 (2005). https://doi.org/10.1007/s11095-005-6489-4
Received:
Accepted:
Published:
Issue Date:
Key Words
- protein aggregation
- protein solubility
- protein stability
- stabilizing peptide
- therapeutic proteins