Stabilizing Peptide Fusion for Solving the Stability and Solubility Problems of Therapeutic Proteins


Protein aggregation is a major stability problem of therapeutic proteins. We investigated whether a novel stabilizing peptide [acidic tail of synuclein (ATS) peptide] could be generally used to make a more stable and soluble form of therapeutic proteins, particularly those having solubility or aggregation problems.


We produced ATS fusion proteins by fusing the stabilizing peptide to three representative therapeutic proteins, and then compared the stress-induced aggregation profiles, thermostability, and solubility of them. We also compared the in vivo stability of these ATS fusion proteins by studying their pharmacokinetics in rats.


The human growth hormone–ATS (hGH–ATS) and granulocyte colony-stimulating factor–ATS (G-CSF–ATS) fusion proteins were fully functional as determined by cell proliferation assay, and the ATS fusion proteins seemed to be very resistant to agitation, freeze/thaw, and heat stresses. The introduction of the ATS peptide significantly increased the storage and thermal stabilities of hGH and G-CSF. The human leptin–ATS fusion protein also seemed to be very resistant to aggregation induced by agitation, freeze/thaw, and heat stresses. Furthermore, the ATS peptide greatly increased the solubility of the fusion proteins. Finally, pharmacokinetic studies in rats revealed that the ATS fusion proteins are also more stable in vivo.


Our data demonstrate that a more stable and soluble form of therapeutic proteins can be produced by fusing the ATS peptide.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7



acidic tail of synuclein


circular dichroism


granulocyte colony-stimulating factor


glutathione S-transferase


human growth hormone


melting temperature


temperature for the onset of unfolding


  1. 1.

    J. F. Carpenter B. S. Kendrick B. S. Chang M. C. Manning T. W. Randolph (1999) ArticleTitleInhibition of stress-induced aggregation of protein therapeutics Methods Enzymol. 309 237–255

    Google Scholar 

  2. 2.

    J. L. Cleland M. F. Powell S. J. Shire (1993) ArticleTitleThe development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation Crit. Rev. Ther. Drug Carr. Syst. 10 307–377

    Google Scholar 

  3. 3.

    M. C. Manning K. Patel R. T. Borchardt (1989) ArticleTitleStability of protein pharmaceuticals Pharm. Res. 6 903–918 Occurrence Handle10.1023/A:1015929109894 Occurrence Handle2687836

    Article  PubMed  Google Scholar 

  4. 4.

    A. Braun L. Kwee M. A. Labow J. Alsenz (1997) ArticleTitleProtein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-α) in normal and transgenic mice Pharm. Res. 14 1472–1478 Occurrence Handle10.1023/A:1012193326789 Occurrence Handle9358564

    Article  PubMed  Google Scholar 

  5. 5.

    W. V. Moore P. Leppert (1980) ArticleTitleRole of aggregated human growth hormone (hGH) in development of antibodies to hGH J. Clin. Endocrinol. Metab. 51 691–697 Occurrence Handle7419661

    PubMed  Google Scholar 

  6. 6.

    C. A. Thornton M. Ballow (1993) ArticleTitleSafety of intravenous immunoglobulin Arch. Neurol. 50 135–136 Occurrence Handle8431130

    PubMed  Google Scholar 

  7. 7.

    R. E. Ratner T. M. Phillips M. Steiner (1990) ArticleTitlePersistent cutaneous insulin allergy resulting from high-molecular-weight insulin aggregates Diabetes 39 728–733 Occurrence Handle2189764

    PubMed  Google Scholar 

  8. 8.

    D. C. Robbins S. M. Cooper S. E. Fineberg P. M. Mead (1987) ArticleTitleAntibodies to covalent aggregates of insulin in blood of insulin-using diabetic patients Diabetes 36 838–841 Occurrence Handle2438179

    PubMed  Google Scholar 

  9. 9.

    P. Talaga (2001) ArticleTitleBeta-amyloid aggregation inhibitors for the treatment of Alzheimer's disease: dream or reality? Mini Rev. Med. Chem. 1 175–186 Occurrence Handle10.2174/1389557013407098 Occurrence Handle12369982

    Article  PubMed  Google Scholar 

  10. 10.

    C. Schlieker B. Bukau A. Mogk (2002) ArticleTitlePrevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology J. Biotechnol. 96 13–21 Occurrence Handle10.1016/S0168-1656(02)00033-0 Occurrence Handle12142139

    Article  PubMed  Google Scholar 

  11. 11.

    M. Katakam A. K. Banga (1997) ArticleTitleUse of poloxamer polymers to stabilize recombinant human growth hormone against various processing stresses Pharm. Dev. Technol. 2 143–149 Occurrence Handle9552440

    PubMed  Google Scholar 

  12. 12.

    M. Katakam L. N. Bell A. K. Banga (1995) ArticleTitleEffect of surfactants on the physical stability of recombinant human growth hormone J. Pharm. Sci. 84 713–716 Occurrence Handle7562409

    PubMed  Google Scholar 

  13. 13.

    M. E. Brewster M. S. Hora J. W. Simpkins N. Bodor (1991) ArticleTitleUse of 2-hydroxypropyl-b-cyclodextrin as a solubilizing and stabilizing excipient for protein drugs Pharm. Res. 8 792–795 Occurrence Handle10.1023/A:1015870521744 Occurrence Handle2062811

    Article  PubMed  Google Scholar 

  14. 14.

    D. E. Otzen B. R. Knudsen F. Aachmann K. L. Larsen R. Wimmer (2002) ArticleTitleStructural basis of cyclodextrins' suppression of human growth hormone aggregation Protein Sci. 11 1779–1787 Occurrence Handle10.1110/ps.0202702 Occurrence Handle12070330

    Article  PubMed  Google Scholar 

  15. 15.

    L. Bam J. L. Cleland J. Yang M. C. Manning J. F. Carpenter R. F. Kelly T. W. Randolph (1998) ArticleTitleTween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions J. Pharm. Sci. 87 1554–1559 Occurrence Handle10.1021/js980175v Occurrence Handle10189266

    Article  PubMed  Google Scholar 

  16. 16.

    A. V. Filikov R. J. Hayes P. Luo D. M. Stark C. Chan A. Kundu B. I. Dahiyat (2002) ArticleTitleComputational stabilization of human growth hormone Protein Sci. 11 1452–1461 Occurrence Handle10.1110/ps.3500102 Occurrence Handle12021444

    Article  PubMed  Google Scholar 

  17. 17.

    A. A. Schulga A. A. Markarov I. V. Levichkin L. Y. Belousova V. M. Labachov I. I. Protasevich C. N. Pace M. P. Kiroichnikov (2002) ArticleTitleIncreased stability of human growth hormone with reduced lactogenic potency FEBS Lett. 528 257–260 Occurrence Handle10.1016/S0014-5793(02)03325-2 Occurrence Handle12297316

    Article  PubMed  Google Scholar 

  18. 18.

    S. M. Park H. Y. Jung K. C. Chung H. Rhim J. H. Park J. Kim (2002) ArticleTitleStress-induced aggregation profiles of GST-α-synuclein fusion proteins: role of the C-terminal acidic tail of α-synuclein in protein thermosolubility and stability Biochemistry 41 4137–4146 Occurrence Handle10.1021/bi015961k Occurrence Handle11900557

    Article  PubMed  Google Scholar 

  19. 19.

    S. M. Park K. J. Ahn H. Y. Jung J. H. Park J. Kim (2004) ArticleTitleEffects of novel peptides derived from the acidic tail of synuclein (ATS) on the aggregation and stability of fusion proteins Protein Eng. Des. Sel. 17 251–260 Occurrence Handle10.1093/protein/gzh029 Occurrence Handle15067107

    Article  PubMed  Google Scholar 

  20. 20.

    J. Kim Y. J. Chwae M. Y. Kim I. H. Choi J. H. Park S. J. Kim (1997) ArticleTitleMolecular basis of HLA-C recognition by p58 natural killer cell inhibitory receptors J. Immunol. 159 3875–3882 Occurrence Handle9378975

    PubMed  Google Scholar 

  21. 21.

    A. K. Patra R. Mukhopadhyay R. Mukhija A. Krishnan L. C. Garg A. K. Panda (2000) ArticleTitleOptimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli Protein Expr. Purif. 18 182–192 Occurrence Handle10.1006/prep.1999.1179 Occurrence Handle10686149

    Article  PubMed  Google Scholar 

  22. 22.

    D. V. Goeddel H. L. Heynecker T. Hozumi R. Arentzen K. Itakura D. G. Yansura M. J. Ross G. Miozzari R. Crea P. H. Seeburg (1979) ArticleTitleDirect expression in Escherichia coli of a DNA sequence coding for human growth hormone Nature 281 544–548 Occurrence Handle10.1038/281544a0 Occurrence Handle386136

    Article  PubMed  Google Scholar 

  23. 23.

    M. H. Ultsch W. Somers A. A. Kossiakoff A. M. Vos ParticleDe (1994) ArticleTitleThe crystal structure of affinity-matured human growth hormone at 2 A resolution J. Mol. Biol. 236 286–299 Occurrence Handle10.1006/jmbi.1994.1135 Occurrence Handle8107110

    Article  PubMed  Google Scholar 

  24. 24.

    E. A. Zhukovsky M. G. Mulkerrin L. G. Presta (1994) ArticleTitleContribution to global protein stabilization of the N-capping box in human growth hormone Biochemistry 33 9856–9864 Occurrence Handle10.1021/bi00199a006 Occurrence Handle8060992

    Article  PubMed  Google Scholar 

  25. 25.

    F. C. Peterson C. L. Brooks (1997) ArticleTitleIdentification of a motif associated with the lactogenic actions of human growth hormone J. Biol. Chem. 272 21444–21448 Occurrence Handle10.1074/jbc.272.34.21444 Occurrence Handle9261160

    Article  PubMed  Google Scholar 

  26. 26.

    T. Tanaka R. P. Shiu P. W. Gout C. T. Beer R. L. Noble H. G. Friesen (1980) ArticleTitleA new sensitive and specific bioassay for lactogenic hormones: measurement of prolactin and growth hormone in human serum J. Clin. Endocrinol. Metab. 51 1058–1063 Occurrence Handle7419681

    PubMed  Google Scholar 

  27. 27.

    M. T. Dattani P. C. Hindmarsh C. G. D. Brook I. C. Robinson J. J. Kopchick N. J. Marshall (1995) ArticleTitleG120R, a human growth hormone antagonist, shows zinc-dependent agonist and antagonist activity on Nb2 cells J. Biol. Chem. 270 9222–9226 Occurrence Handle10.1074/jbc.270.16.9222 Occurrence Handle7721840

    Article  PubMed  Google Scholar 

  28. 28.

    Y. F. Maa C. C. Hsu (1997) ArticleTitleProtein denaturation by combined effect of shear and air–liquid interface Biotechnol. Bioeng. 54 503–512 Occurrence Handle10.1002/(SICI)1097-0290(19970620)54:6<503::AID-BIT1>3.0.CO;2-N

    Article  Google Scholar 

  29. 29.

    B. M. Eckhardt J. Q. Oeswein T. A. Bewley (1991) ArticleTitleEffect of freezing on aggregation of human growth hormone Pharm. Res. 8 1360–1364 Occurrence Handle10.1023/A:1015888704365 Occurrence Handle1798670

    Article  PubMed  Google Scholar 

  30. 30.

    S. A. Charman M. L. Mason W. N. Charman (1993) ArticleTitleTechniques for assessing the effects of pharmaceutical excipients on the aggregation of porcine growth hormone Pharm. Res. 10 954–962 Occurrence Handle10.1023/A:1018994102218 Occurrence Handle8378257

    Article  PubMed  Google Scholar 

  31. 31.

    P. Luo R. J. Hayes C. Chan D. M. Stark M. Y. Hwang J. M. Jacinto P. Juvvadi H. S. Chung A. Keundu M. L. Ary B. I. Dahiyat (2002) ArticleTitleDevelopment of a cytokine analog with enhanced stability using computational ultrahigh throughput screening Protein Sci. 11 1218–1226 Occurrence Handle10.1110/ps.4580102 Occurrence Handle11967378

    Article  PubMed  Google Scholar 

  32. 32.

    B. Bishop D. C. Koay A. C. Sartorelli L. Regan (2001) ArticleTitleReengineering granulocyte colony-stimulating factor for enhanced stability J. Biol. Chem. 276 33465–33470 Occurrence Handle10.1074/jbc.M104494200 Occurrence Handle11406632

    Article  PubMed  Google Scholar 

  33. 33.

    M. J. Treuheit A. A. Kosky D. N. Brems (2002) ArticleTitleInverse relationship of protein concentration and aggregation Pharm. Res. 19 511–516 Occurrence Handle10.1023/A:1015108115452 Occurrence Handle12033388

    Article  PubMed  Google Scholar 

  34. 34.

    F. Zhang M. B. Basinski J. M. Beals S. L. Briggs L. M. Churgay D. K. Clawson R. D. DiMarchi T. C. Furman J. E. Hale H. M. Hsiung B. E. Schoner D. P. Smith X. Y. Zhang J. P. Wery R. W. Schevitz (1997) ArticleTitleCrystal structure of the obese protein leptin-E100 Nature 387 206–209 Occurrence Handle10.1038/387206a0 Occurrence Handle9144295

    Article  PubMed  Google Scholar 

  35. 35.

    C. Tanford (1961) Physical Chemistry of Macromolecules John Wiley and Sons, Inc. New York

    Google Scholar 

  36. 36.

    S. J. Shire Z. Shahrokh J. Liu (2004) ArticleTitleChallenges in the development of high protein concentration formulations J. Pharm. Sci. 93 1390–1402 Occurrence Handle10.1002/jps.20079 Occurrence Handle15124199

    Article  PubMed  Google Scholar 

  37. 37.

    C. B. Lucking A. Brice (2000) ArticleTitleα-Synuclein and Parkinson's disease Cell. Mol. Life Sci. 57 1894–1908 Occurrence Handle11215516

    PubMed  Google Scholar 

  38. 38.

    S. M. Park H. Y. Jung T. D. Kim J. H. Park C. H. Yang J. Kim (2002) ArticleTitleDistinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of α-synuclein, a molecular chaperone J. Biol. Chem. 277 28512–28520 Occurrence Handle10.1074/jbc.M111971200 Occurrence Handle12032141

    Article  PubMed  Google Scholar 

  39. 39.

    W. Wang (2000) ArticleTitleLyophilization and development of solid protein pharmaceuticals Int. J. Pharm. 203 1–60 Occurrence Handle10.1016/S0378-5173(00)00423-3 Occurrence Handle10967427

    Article  PubMed  Google Scholar 

  40. 40.

    W. Wang (1999) ArticleTitleInstability, stabilization, and formation of liquid protein pharmaceuticals Int. J. Pharm. 185 129–188 Occurrence Handle10.1016/S0378-5173(99)00152-0 Occurrence Handle10460913

    Article  PubMed  Google Scholar 

  41. 41.

    H. S. Lu C. L. Clogston L. O. Narhi L. A. Merewether W. R. Pearl T. C. Boone (1992) ArticleTitleFolding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli: Characterization of the disulfide-reduced intermediates and cysteine-serine analogs J. Biol. Chem. 267 8770–8777 Occurrence Handle1374379

    PubMed  Google Scholar 

  42. 42.

    K. J. Jeong S. Y. Lee (1999) ArticleTitleHigh-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification Appl. Environ. Microbiol. 65 3027–3032 Occurrence Handle10388699

    PubMed  Google Scholar 

  43. 43.

    T. D. Kim H. J. Ryu H. I. Cho C. H. Yang J. Kim (2000) ArticleTitleThermal behavior of proteins: heat-resistant proteins and their heat-induced secondary structural changes Biochemistry 39 14839–14846 Occurrence Handle10.1021/bi001441y Occurrence Handle11101300

    Article  PubMed  Google Scholar 

  44. 44.

    M. M. Bradford (1976) ArticleTitleA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem. 72 248–254 Occurrence Handle942051

    PubMed  Google Scholar 

  45. 45.

    M. Okabe M. Asano Y. Komatsu M. Yamasaki Y. Yokoo S. Itoh M. Morimoto T. Oka (1990) ArticleTitleIn vitro and in vivo hematopoietic effect of mutant human granulocyte colony-stimulating factor Blood 75 1788–1793 Occurrence Handle1691933

    PubMed  Google Scholar 

  46. 46.

    B. L. Osborn L. Sekut M. Corcoran C. Poortman B. Sturm G. Chen D. Mather H. L. Lin T. J. Parry (2002) ArticleTitleAlbutropin: a growth hormone-albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys Eur. J. Pharmacol. 456 149–158 Occurrence Handle10.1016/S0014-2999(02)02644-4 Occurrence Handle12450581

    Article  PubMed  Google Scholar 

Download references


We thank Dr. S.M. Park and K.J. Ahn for their technical assistance. This work was supported in part by a grant (R13-2002-054-02002-0) from the basic research program of the KOSEF.

Author information



Corresponding author

Correspondence to Jongsun Kim.

Additional information

E. N. Lee and Y. M. Kim equally contributed to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, E.N., Kim, Y.M., Lee, H.J. et al. Stabilizing Peptide Fusion for Solving the Stability and Solubility Problems of Therapeutic Proteins. Pharm Res 22, 1735–1746 (2005).

Download citation

Key Words

  • protein aggregation
  • protein solubility
  • protein stability
  • stabilizing peptide
  • therapeutic proteins