Skip to main content
Log in

The Thermodynamics of the Partitioning of Ionizing Molecules Between Aqueous Buffers and Phospholipid Membranes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To study the thermodynamics of partitioning of eight ionising dual D2-recepto β2-adrenoceptor agonists between vesicles of L-α-dimyristoylphosphatidylcholine (DMPC) and aqueous buffers.

Methods

The thermodynamics of partitioning have been studied by isothermal titration calorimetry (ITC).

Results

Compounds which are predominantly cationic at pH 7.4 (designated as class 1 compounds) have a more exothermic partitioning than those which are predominantly in the electronically neutral form (designated as class 2 compounds) at pH 7.4, and less positive standard entropies of partitioning. Under acidic conditions (pH 4.0), class compounds 2 (predominantly electronically neutral at pH 7.4) are almost completely cationic and accordingly have a more exothermic partitioning than at pH 7.4. The standard entropies of partitioning also depend on the pH. When the compounds are predominantly cationic, the standard entropy change is less positive (less favourable) than under conditions where the compounds are predominantly electronically neutral.

Conclusions

The observations are consistent with the notion of there being a favourable electrostatic interaction (enthalpically) between the positively charged amino-group of predominantly cationic compounds and the negatively charged phosphate group of the vesicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. G. Rhodes R. Newton R. Butler L. G. Herbette (1992) ArticleTitleEquilibrium and kinetic studies of the interactions of salmeterol with biological bilayers Mol. Pharmacol. 42 596–602 Occurrence Handle1435738

    PubMed  Google Scholar 

  2. Y. W. Choi J. A. Rogers (1990) ArticleTitleThe liposome as a model in correlations of partitioning with α-adrenoceptor agonist activities Pharm. Res. 7 508–512 Occurrence Handle10.1023/A:1015820917453 Occurrence Handle1973289

    Article  PubMed  Google Scholar 

  3. G. V. Betageri J. A. Rogers (1988) ArticleTitleThe liposome as a distribution model in QSAR studies Int. J. Pharm. 46 95–102 Occurrence Handle10.1016/0378-5173(88)90014-2

    Article  Google Scholar 

  4. R. P. Austin P. Barton R. V. Bonnert R. C. Brown P. A. Cage D. R. Cheshire A. M. Davis I. G. Dougall F. Ince G. Pairaudeau A. Young (2003) ArticleTitleQSAR and the rational design of long-acting dual D2-receptor/β2-adrenoceptor agonists J. Med. Chem. 46 3210–3220 Occurrence Handle10.1021/jm020886c Occurrence Handle12852752

    Article  PubMed  Google Scholar 

  5. R. V. Bonnert R. C. Brown D. Chapman D. R. Cheshire J. Dixon F. Ince E. C. Kinschin A. J. Lyons A. J. Davis C. Hallam S. T. Harper J. F. Unitt I. G. Dougall D. M. Jackson K. McKechnie Alan Young W. T. Simpson (1998) ArticleTitleDual D2-receptor and β2-adrenoceptor agonists for the treatment of airway diseases. 1. Discovery and biological evaluation of some 7-2(2-aminoethyl)-4-hydroxybenzothiaol-2(3H)-one analogues J. Med. Chem. 41 4915–4917 Occurrence Handle10.1021/jm980421f Occurrence Handle9836607

    Article  PubMed  Google Scholar 

  6. R. Preston S. F. Campbell S. Wang L. G. Herbette (1989) ArticleTitleComparison of location and binding for the positively charged 1,4-dihydropyridine calcium channel antagonist amlodipine with uncharged drugs of this class in cardiac membranes Mol. Pharmacol. 36 634–640 Occurrence Handle2554114

    PubMed  Google Scholar 

  7. H. Bauerle J. Seelig (1991) ArticleTitleInteraction of charged and uncharged calcium channel antagonists with phospholipid membranes. Binding equilibrium, binding enthalpy and membrane location Biochemistry 30 7203–7211 Occurrence Handle10.1021/bi00243a023 Occurrence Handle1830218

    Article  PubMed  Google Scholar 

  8. Y. Boulanger A. Ehrenberg I. C. P. Smith (1982) ArticleTitleCharge and pH dependent drug binding to model membranes a 2H-NMR and light absorption study Biochim. Biophys. Acta 685 315–328 Occurrence Handle7199938

    PubMed  Google Scholar 

  9. K. W. Miller S. C. T. Yu (1977) ArticleTitleThe dependence of the lipid bilayer membrane: Buffer partition coefficient of pentobarbitone on pH and lipid composition Br. J. Pharmacol. 61 57–63 Occurrence Handle21013

    PubMed  Google Scholar 

  10. G. M. Pauletti H. Wunderli-Allenspach (1994) ArticleTitlePartition coefficients in-vitro: Artificial membranes as a distribution model Eur. J. Pharm. Sci. 1 273–282 Occurrence Handle10.1016/0928-0987(94)90022-1

    Article  Google Scholar 

  11. S. D. Kramer H. Wunderli-Allenspach (1996) ArticleTitleThe pH-dependence in the partitioning of (RS)-[3H]-propranolol between MDCK cell lipid vesicles and buffer Pharm. Res. 13 1851–1855 Occurrence Handle10.1023/A:1016089209798 Occurrence Handle8987083

    Article  PubMed  Google Scholar 

  12. C. Ottiger H. Wunderli-Allenspach (1997) ArticleTitlePartition behaviour of acids and bases in a phosphatidylcholine liposome-buffer equilibrium dialysis system Eur. J. Pharm. Sci. 5 223–231 Occurrence Handle10.1016/S0928-0987(97)00278-9

    Article  Google Scholar 

  13. S. D. Kramer C. Jakits-Deiser H. Wunderli-Allenspach (1997) ArticleTitleFree fatty acids cause pH-dependent changes in drug–lipid membrane interactions around physiological pH Pharm. Res. 6 827–832 Occurrence Handle10.1023/A:1012175111401

    Article  Google Scholar 

  14. S. D. Kramer A. Braun C. Jakits H. Wunderli-Allenspach (1998) ArticleTitleTowards the predictability of drug–lipid membrane interactions: The pH-dependent affinity of propranolol to phosphatidylinositol containing liposomes Pharm. Res. 5 739–743 Occurrence Handle10.1023/A:1011923103938

    Article  Google Scholar 

  15. R. P. Austin A. M. Davis C. N. Manners (1995) ArticleTitlePartitioning of ionising molecules between aqueous buffers and phospholipid vesicles J. Pharm. Sci. 84 1180–1183 Occurrence Handle8801331

    PubMed  Google Scholar 

  16. R. P. Austin P. Barton A. M. Davis C. N. Manners M. C. Stansfield (1998) ArticleTitleThe effect of ionic strength on liposome-buffer and 1-octanol-buffer distribution coefficients J. Pharm. Sci. 87 599–607 Occurrence Handle10.1021/js9703481 Occurrence Handle9572911

    Article  PubMed  Google Scholar 

  17. C. J. Alcorn D. E. Leahy T. J. Peters R. J. Simpson (1993) ArticleTitlePartition and distribution coefficients of solutes and drugs in brush border membrane vesicles Biochim. Pharmacol. 45 1775–1782 Occurrence Handle10.1016/0006-2952(93)90433-W

    Article  Google Scholar 

  18. P. G. Thomas J. Seelig (1993) ArticleTitleBinding of the calcium antagonist flunarizine to phosphatidylcholine bilayers: Charge effects and thermodynamics Biochim. J. 291 397–402

    Google Scholar 

  19. J. Seelig (1996) ArticleTitlePaclitaxel partitioning into lipid bilayers J. Pharm Sci. 85 228–231 Occurrence Handle10.1021/js950120i Occurrence Handle8683453

    Article  PubMed  Google Scholar 

  20. J. Seelig (1991) ArticleTitleInteraction of charged and uncharged calcium channel antagonists with phospholipid membranes. Binding equilibrium, binding enthalpy and membrane location Biochemistry 30 7203–7211 Occurrence Handle10.1021/bi00243a023 Occurrence Handle1830218

    Article  PubMed  Google Scholar 

  21. J. Seelig (2002) ArticleTitleInteractions of cyclosporins with lipid membranes as studies by solid state nuclear magnetic resonance spectroscopy and high sensitivity calorimetry J. Pharm. Sci. 91 856–867 Occurrence Handle10.1002/jps.10071 Occurrence Handle11920770

    Article  PubMed  Google Scholar 

  22. J. Seelig (1991) ArticleTitleNonclassical hydrophobic effect in membrane binding equilibria Biochemistry 30 9354–9359 Occurrence Handle10.1021/bi00102a031 Occurrence Handle1832558

    Article  PubMed  Google Scholar 

  23. D. D. Perrin B. Dempsey E. P. Serjeant (1981) pKa Prediction of Organic Acids and Bases Chapman and Hall London

    Google Scholar 

  24. C. Hansch A. Leo D. Hoekman (1995) Exploring QSAR Hydrophobic, Electronic and Steric Constants American Chemical Society Reference Book Washington DC

    Google Scholar 

  25. A. Pagliara P. Carrupt G. Caron P. Gaillard B. Testa (1997) ArticleTitleLipophilicity profiles of ampholytes Chem. Rev. 97 3385–3400 Occurrence Handle10.1021/cr9601019 Occurrence Handle11851494

    Article  PubMed  Google Scholar 

  26. L. D. Mayer M. J. Hope P. R. Cullis (1986) ArticleTitleVesicles of various sizes produced by a rapid extrusion procedure Biochim. Biophys. Acta 858 161–168 Occurrence Handle3707960

    PubMed  Google Scholar 

  27. A. Seelig P. R. Allegrini J. Seelig (1988) ArticleTitlePartitioning of local anesthetics into membranes: Surface charge effects monitored by the phospholipid head-group Biochim. Biophys. Acta. 939 267–276 Occurrence Handle3355817

    PubMed  Google Scholar 

  28. A. Avdeef J. J. Box J. E. Comer C. Hibbert K. Y. Tam (1998) ArticleTitlepH-metric LogP 10. Determination of liposomal membrane–water partition coefficients of ionizable drugs Pharm. Res. 15 209–215 Occurrence Handle10.1023/A:1011954332221 Occurrence Handle9523305

    Article  PubMed  Google Scholar 

  29. S. S. Davis M. J. James N. H. Anderson (1986) ArticleTitleThe distribution of substituted phenols into lipid membranes Faraday Discuss. 81 312–327

    Google Scholar 

  30. M. Caffrey J. Hogan (1992) ArticleTitleLIPIDAT: A database of lipid phase transition temperatures and enthalpy changes. DMPC data subset analysis Chem. Phys. Lipids 61 1–109 Occurrence Handle10.1016/0009-3084(92)90002-7 Occurrence Handle1315624

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger E. Fessey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, R.P., Barton, P., Davis, A.M. et al. The Thermodynamics of the Partitioning of Ionizing Molecules Between Aqueous Buffers and Phospholipid Membranes. Pharm Res 22, 1649–1657 (2005). https://doi.org/10.1007/s11095-005-6336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-6336-7

Key Words

Navigation