Skip to main content
Log in

Optimization and Applications of CDAP Labeling for the Assignment of Cysteines

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim of the study is to provide a methodology for assigning unpaired cysteine residues in proteins formulated in a variety of different conditions to identify structural heterogeneity as a potential cause for protein degradation.

Methods

1-Cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) was employed for cyanylating free cysteines in proteins and peptides. Subsequent basic cleavage of the peptide bond at the N-terminal side of the cyanylated cysteines provided direct information about their location.

Results

CDAP was successfully employed to a wide variety of labeling conditions. CDAP was reactive between pH 2.0 and 8.0 with a maximum labeling efficiency at pH 5.0. Its reactivity was not affected by excipients, salt or denaturant. Storing CDAP in an organic solvent increased its intrinsic stability. It was demonstrated that CDAP can be employed as a thiol-directed probe to investigate structural heterogeneity of proteins by examining the accessibility of unpaired cysteine residues.

Conclusion

CDAP is a unique cysteine-labeling reagent because it is reactive under acidic conditions. This provides an advantage over other sulfhydryl labeling reagents as it avoids potential thiol-disulfide exchange. Optimization of the cyanylation reaction allowed the utilization of CDAP as a thiol-directed probe to investigate accessibility of sulfhydryl groups in proteins under various formulation conditions to monitor structural heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDAP:

1-Cyano-4-dimethylaminopyridinium tetrafluoroborate

DAP:

4-Dimethylaminopyridinium tetrafluoroborate

rmethG-CSF:

Recombinant methionyl human granulocyte-colony stimulating factor

GdnHCl:

Guanidine hydrochloride

HPLC:

High-performance liquid chromatography

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

OPG:

Osteoprotegerin

TOF:

Time of flight

UV:

Ultraviolet

References

  1. S. Evans P. Grassam (1986) ArticleTitleConsiderations for parenteral dosage form development of natural alpha interferon J. Parenter. Sci. Technol. 40 83–87

    Google Scholar 

  2. Z. Shahrokh G. Eberlein D. Buckley M. V. Paranandi D. W. Aswad P. Stratton R. Mischak Y. J. Wang (1994) ArticleTitleMajor degradation products of basic fibroblast growth factor: detection of succinimide and iso-aspartate in place of aspartate Pharm. Res. 11 936–944

    Google Scholar 

  3. E. R. Hoff R. C. Chloupek (1996) ArticleTitleAnalytical peptide mapping of recombinant DNA-derived proteins by reversed-phase high-performance liquid chromatography Methods Enzymol. 271 51–68

    Google Scholar 

  4. M. W. Dong (1992) ArticleTitleTryptic mapping by reversed phase liquid chromatography Adv. Chromatogr. 32 21–51

    Google Scholar 

  5. J. T. Watson Y. Yang J. Wu (2001) ArticleTitleCapture and identification of folding intermediates of cystinyl proteins by cyanylation and mass spectrometry J. Mol. Graph. Model. 19 119–128

    Google Scholar 

  6. J. S. Weissman P. S. Kim (1991) ArticleTitleReexamination of the folding of BPTI: predominance of native intermediates Science 253 1386–1393

    Google Scholar 

  7. D. M. Rothwarf H. A. Scheraga (1993) ArticleTitleRegeneration of bovine pancreatic ribonuclease A. 1. Steady-state distribution Biochemistry 32 2671–2679

    Google Scholar 

  8. G. R. Jacobson M. H. Schaffer G. R. Stark T. C. Vanaman (1973) ArticleTitleSpecific chemical cleavage in high yield at the amino peptide bonds of cysteine and cystine residues J. Biol. Chem. 248 6583–6591

    Google Scholar 

  9. I. A. Papayannopoulos K. Biemann (1992) ArticleTitleAmino acid sequence of a protease inhibitor isolated from Sarcophaga bullata determined by mass spectrometry Protein Sci. 1 278–288

    Google Scholar 

  10. Y. Degani A. Patchornik (1974) ArticleTitleCyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues Biochemistry 13 1–11

    Google Scholar 

  11. N. D. Denslow H. P. Nguyen (1996) Tech. Protein Chem. VII 241–248

    Google Scholar 

  12. N. C. Price (1976) ArticleTitleAlternative products in the reaction of 2-nitro-5-thiocyanatobenzoic acid with thiol groups Biochem. J. 159 177–180

    Google Scholar 

  13. T. H. Liao A. Wadano (1979) ArticleTitleInactivation of DNase by 2-nitro-5-thiocyanobenzoic acid. II. Serine and threonine are the sites of reaction on the DNase molecule J. Biol. Chem. 254 9602–9607

    Google Scholar 

  14. M. Wakselman and E. Guibe-Jampel. 1-Cyano-4-dimethylamino-pyridinium salts: new water-soluble reagents for the cyanylation of protein sulfhydryl groups. J. Chem. Soc., Chem. Commun. 21–22 (1976).

  15. S. Nakagawa Y. Tamakashi T. Hamana M. Kawase S. Taketomi Y. Ishibashi O. Nishimura T. Fukuda (1994) ArticleTitleChemical cleavage of recombinant fusion proteins to yield peptide amides J. Am. Chem. Soc. 116 5513–5514

    Google Scholar 

  16. J. Wu J. T. Watson (1997) ArticleTitleA novel methodology for assignment of disulfide bond pairings in proteins Protein Sci. 6 391–398

    Google Scholar 

  17. S. Nakagawa Y. Tamakashi Y. Ishibashi M. Kawase S. Taketomi O. Nishimura T. Fukuda (1994) ArticleTitleProduction of human PTH(1-34) via a recombinant DNA technique Biochem. Biophys. Res. Commun. 200 1735–1741

    Google Scholar 

  18. J. Wu J. T. Watson (1998) ArticleTitleOptimization of the cleavage reaction for cyanylated cysteinyl proteins for efficient and simplified mass mapping Anal. Biochem. 258 268–276

    Google Scholar 

  19. J. Wu D. A. Gage J. T. Watson (1996) ArticleTitleA strategy to locate cysteine residues in proteins by specific chemical cleavage followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Anal. Biochem. 235 161–174

    Google Scholar 

  20. J. Wu Y. Yang J. T. Watson (1998) ArticleTitleTrapping of intermediates during the refolding of recombinant human epidermal growth factor (hEGF) by cyanylation, and subsequent structural elucidation by mass spectrometry Protein Sci. 7 1017–1028

    Google Scholar 

  21. S. F. Betz G. J. Pielak (1992) ArticleTitleIntroduction of a disulfide bond into cytochrome c stabilizes a compact denatured state Biochemistry 31 12337–12344

    Google Scholar 

  22. S. F. Betz (1993) ArticleTitleDisulfide bonds and the stability of globular proteins Protein Sci. 2 1551–1558

    Google Scholar 

  23. O. B. Ptitsyn (1995) ArticleTitleStructures of folding intermediates Curr. Opin. Struct. Biol. 5 74–78

    Google Scholar 

  24. Y. J. Li D. M. Rothwarf H. A. Scheraga (1995) ArticleTitleMechanism of reductive protein unfolding Nat. Struct. Mol. Biol. 2 489–494

    Google Scholar 

  25. P. S. Kim R. L. Baldwin (1990) ArticleTitleIntermediates in the folding reactions of small proteins Ann. Rev. Biochem. 59 631–660

    Google Scholar 

  26. C. R. Matthews (1993) ArticleTitlePathways of protein folding Ann. Rev. Biochem. 62 653–683

    Google Scholar 

  27. Q. X. Hua W. Jia B. H. Frank N. F. Phillips M. A. Weiss (2002) ArticleTitleA protein caught in a kinetic trap: structures and stabilities of insulin disulfide isomers Biochemistry 41 14700–14715

    Google Scholar 

  28. J. Schuurman G. J. Perdok A. D. Gorter R. C. Aalberse (2001) ArticleTitleThe inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds Mol. Immunol. 38 1–8

    Google Scholar 

  29. D. N. Brems P. L. Brown G. W. Becker (1990) ArticleTitleEquilibrium denaturation of human growth hormone and its cysteine-modified forms J. Biol. Chem. 265 5504–5511

    Google Scholar 

  30. N. Darby T. E. Creighton (1997) ArticleTitleProbing protein folding and stability using disulfide bonds Mol. Biotechnol. 7 57–77

    Google Scholar 

  31. A. Wawrzynow J. H. Collins (1993) ArticleTitleChemical modification of the Ca(2+)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum: identification of sites labeled with aryl isothiocyanates and thiol-directed conformational probes Biochim. Biophys. Acta 1203 60–70

    Google Scholar 

  32. C. P. Hill T. D. Osslund D. Eisenberg (1993) ArticleTitleThe structure of granulocyte-colony-stimulating factor and its relationship to other growth factors Proc. Natl. Acad. Sci. USA 90 5167–5171

    Google Scholar 

  33. S. Krishnan E. Y. Chi J. N. Webb B. S. Chang D. Shan M. Goldenberg M. C. Manning T. W. Randolph J. F. Carpenter (2002) ArticleTitleAggregation of granulocyte colony stimulating factor under physiological conditions: characterization and thermodynamic inhibition Biochemistry 41 6422–6431

    Google Scholar 

  34. E. Y. Chi S. Krishnan B. S. Kendrick B. S. Chang J. F. Carpenter T. W. Randolph (2003) ArticleTitleRoles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor Protein Sci. 12 903–913

    Google Scholar 

  35. B. Bishop D. C. Koay A. C. Sartorelli L. Regan (2001) ArticleTitleReengineering granulocyte colony-stimulating factor for enhanced stability J. Biol. Chem. 276 33465–33470

    Google Scholar 

  36. T. Arakawa S. J. Prestrelski L. O. Narhi T. C. Boone W. C. Kenney (1993) ArticleTitleCysteine 17 of recombinant human granulocyte-colony stimulating factor is partially solvent-exposed J. Protein Chem. 12 525–531

    Google Scholar 

  37. M. S. Ricci C. A. Sarkar E. M. Fallon D. A. Lauffenburger D. N. Brems (2003) ArticleTitlepH Dependence of structural stability of interleukin-2 and granulocyte colony-stimulating factor Protein Sci. 12 1030–1038

    Google Scholar 

  38. L. O. Narhi W. C. Kenney T. Arakawa (1991) ArticleTitleConformational changes of recombinant human granulocyte-colony stimulating factor induced by pH and guanidine hydrochloride J. Protein Chem. 10 359–367

    Google Scholar 

Download references

Acknowledgment

The author likes to thank David Brems of Amgen for helpful discussions and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd R. Kleemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pipes, G.D., Kosky, A.A., Abel, J. et al. Optimization and Applications of CDAP Labeling for the Assignment of Cysteines. Pharm Res 22, 1059–1068 (2005). https://doi.org/10.1007/s11095-005-5643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-5643-3

Key Words

Navigation