Skip to main content
Log in

pH-Dependent Dissolution in Vitro and Absorption in Vivo of Weakly Basic Drugs: Development of a Canine Model

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

The aim of this research was to develop a pH-dependent canine absorption model for studying pH effect on both dissolution in vitro and pharmacokinetics in vivo using the weak bases ketoconazole and dipyridamole as model drugs.

Methods.

Ketoconazole and dipyridamole pH-dependent dissolution profiles in vitro were determined by dissolution test at different pH values using USP apparatus II and an Opt-Diss Fiber Optic UV System. In vivo absorption studies for ketoconazole and dipyridamole were performed with crossover design in three groups of beagle dogs under control (no treatment), pentagastrin, and famotidine treatments. Ketoconazole and dipyridamole plasma concentrations were quantified by gradient high performance liquid chromatography mass spectroscopy (HPLC MS/MS). Pharmacokinetic parameters were determined from individual plasma concentration vs. time profiles.

Results.

Ketoconazole and dipyridamole displayed pH-dependent dissolution. Increasing the pH of the dissolution medium from 1.2 to 6.8 reduced the extent of dissolution of ketoconazole and dipyridamole at 1 h by 96% and 92%, respectively. In vivo studies in dogs under control (no treatment), pentagastrin, and famotidine treatments show marked differences in systemic ketoconazole and dipyridamole exposure. Area under the concentration-time curve (AUC) increased more than 4-fold as compared to control group, whereas it increased nearly 30-fold for ketoconazole and 9-fold for dipyridamole with pentagastrin (gastric pH ∼2–3) as compared to famotidine (gastric pH ∼5–7.5) treatment.

Conclusions.

This work demonstrates a pH-dependent dissolution in vitro and absorption in vivo for the weak bases ketoconazole and dipyridamole independent of food effects. This model is useful to examine pH-dependent effects on oral drug absorption and for screening formulations to overcome the pH dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. M. Akimoto, N. Nagahata, A. Furuya, K. Fukushima, S. Higuchi, and T. Suwa. Gastric pH profiles of beagle dogs and their use as an alternative to human testing. Eur. J. Pharm. Biopharm. 49:99–102 (2000).

    Google Scholar 

  2. 2. C. Y. Lui, G. L. Amidon, R. R. Berardi, D. Fleisher, C. Youngberg, and J. B. Dressman. Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. J. Pharm. Sci. 75:271–274 (1986).

    Google Scholar 

  3. 3. J. H. Lin. Species similarities and differences in pharmacokinetics. Drug Metab. Dispos. 23:1008–1021 (1995).

    Google Scholar 

  4. 4. J. B. Dressman. Comparison of canine and human gastrointestinal physiology. Pharm. Res. 3:123–131 (1986).

    Google Scholar 

  5. 5. G. P. Bodey. Fungal infections complicating acute leukemia. J. Chronic Dis. 19:667–687 (1966).

    Google Scholar 

  6. 6. J. A. Como and W. E. Dismukes. Oral azole drugs as systemic antifungal therapy. N. Engl. J. Med. 330:263–272 (1994).

    Google Scholar 

  7. 7. V. Fainstein, G. P. Bodey, L. Elting, A. Maksymiuk, M. Keating, and K. B. McCredie. Amphotericin B or ketoconazole therapy of fungal infections in neutropenic cancer patients. Antimicrob. Agents Chemother. 31:11–15 (1987).

    Google Scholar 

  8. 8. S. C. Piscitelli, T. F. Goss, J. H. Wilton, D. T. D’Andrea, H. Goldstein, and J. J. Schentag. Effects of ranitidine and sucralfate on ketoconazole bioavailability. Antimicrob. Agents Chemother. 35:1765–1771 (1991).

    Google Scholar 

  9. 9. USP–DI Drug Information for the Health Care Professional, Greenwood Village, United States Pharmacopeial Convention, Inc., 1991.

  10. 10. J. A. Carlson, H. J. Mann, and D. M. Canafax. Effect of pH on disintegration and dissolution of ketoconazole tablets. Am. J. Hosp. Pharm. 40:1334–1336 (1983).

    Google Scholar 

  11. 11. W. O. Foye. Principles of Medicinal Chemistry, Lea and Febiger, Philadelphia, 1981.

    Google Scholar 

  12. 12. R. A. Blum, D. T. D’Andrea, B. M. Florentino, J. H. Wilton, D. M. Hilligoss, M. J. Gardner, E. B. Henry, H. Goldstein, and J. J. Schentag. Increased gastric pH and the bioavailability of fluconazole and ketoconazole. Ann. Intern. Med. 114:755–757 (1991).

    Google Scholar 

  13. 13. T. W. Chin, M. Loeb, and I. W. Fong. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob. Agents Chemother. 39:1671–1675 (1995).

    Google Scholar 

  14. 14. P. Lelawongs, J. A. Barone, J. L. Colaizzi, A. T. Hsuan, W. Mechlinski, R. Legendre, and J. Guarnieri. Effect of food and gastric acidity on absorption of orally administered ketoconazole. Clin. Pharm. 7:228–235 (1988).

    Google Scholar 

  15. 15. T. L. Russell, R. R. Berardi, J. L. Barnett, T. L. O’Sullivan, J. G. Wagner, and J. B. Dressman. pH-related changes in the absorption of dipyridamole in the elderly. Pharm. Res. 11:136–143 (1994).

    Google Scholar 

  16. 16. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bio-availability. Pharm. Res. 12:413–420 (1995).

    Google Scholar 

  17. 17. C. A. Knupp, W. C. Shyu, E. A. Morgenthien, J. S. Lee, and R. H. Barbhaiya. Biopharmaceutics of didanosine in humans and in a model for acid-labile drugs, the pentagastrin-pretreated dog. Pharm. Res. 10:1157–1164 (1993).

    Google Scholar 

  18. 18. M. Goemann and T. G. Cantu. Ketoconazole and gastric acidity. Clin. Pharm. 12:802 (1993).

    Google Scholar 

  19. 19. X. Lu, R. Lozano, and P. Shah. In situ dissolution testing using different uv fiber optic probes and instruments. Dissolution Technol. 10:6–15 (2003).

    Google Scholar 

  20. 20. J. B. Dressman, G. L. Amidon, C. Reppas, and V. P. Shah. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15:11–22 (1998).

    Google Scholar 

  21. 21. J. B. Dressman and C. Reppas. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. 11:S73–S80 (2000).

    Google Scholar 

  22. 22. D. Lange, J. H. Pavao, J. Wu, and M. Klausner. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J. Clin. Pharmacol. 37:535–540 (1997).

    Google Scholar 

  23. 23. D. C. Sadowski. Drug interactions with antacids. Mechanisms and clinical significance. Drug Saf. 11:395–407 (1994).

    Google Scholar 

  24. 24. T. Zimmermann, R. A. Yeates, H. Laufen, G. Pfaff, and A. Wildfeuer. Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur. J. Clin. Pharmacol. 46:147–150 (1994).

    Google Scholar 

  25. 25. N. Kohri, N. Miyata, M. Takahashi, H. Endo, K. Iseki, K. Miyazaki, S. Takechi, and A. Nomura. Evaluation of pH-independent sustained-release granules of dipyridamole by using gastric-acidity-controlled rabbits and human subjects. Int. J. Pharm. 81:49–58 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duxin Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, R., Moench, P., Heran, C. et al. pH-Dependent Dissolution in Vitro and Absorption in Vivo of Weakly Basic Drugs: Development of a Canine Model. Pharm Res 22, 188–192 (2005). https://doi.org/10.1007/s11095-004-1185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-1185-3

Key words:

Navigation