Skip to main content

Advertisement

Log in

Effect of Glycyrrhizic Acid on the Viability of Hela Cervical Adenocarcinoma Cell Line at Different Concentrations of Sex Steroid Hormones

  • MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The persistence of human papillomavirus affects the processes of proliferation and differentiation of the stratified squamous epithelium of the cervix with the development of cervical intraepithelial neoplasia and cervical cancer. Hormonal factors have an impact on the process of neoplastic transformation. The aim of this study was an evaluation of the effect of glycyrrhizic acid on the viability of HeLa cervical adenocarcinoma cells at different concentrations of sex steroid hormones. The half-maximal inhibitory concentration (IC50) of glycyrrhizic acid against HeLa cervical adenocarcinoma cells was 72.2 μM. The IC50 of glycyrrhizic acid increased by 13.4% and 17% for testosterone, decreased by 1.8% and 11.8% for estradiol, and increased by 8.7% and 8.6% for progesterone, respectively, in the presence of the hormones at concentrations of 10 μM and 1 μM. Thus, testosterone and progesterone at concentrations of 10 and 1 μM diminished the antiproliferative effect of glycyrrhizic acid, while estradiol at a low concentration (1 μM) enhanced it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. R. L. Siegel, K. D. Miller, N. S. Wagle, and A. Jemal, Ca-Cancer J. Clin., 73(1), 17 – 48 (2023).

    Article  PubMed  Google Scholar 

  2. S. I. Rogovskaya, I. V. Mikheeva, O. Yu. Shipulina, et al., Epidemiol. Vaktsinoprofilakt., 62(1), 25 – 33 (2012).

    Google Scholar 

  3. Russian Society of Obstetricians and Gynecologists. Russian Society of Specialists on Prevention and Treatment of Reproductive System Tumors. Clinical Recommendations (2020).

  4. V. F. Levshin and A. Ya. Zavel’skaya, Vopr. Onkol., 63(3), 506 – 516 (2017).

    Article  Google Scholar 

  5. M. L. Bristol, C. D. James, X. Wang, et al., mSphere, 5(2), e00049 – 20 (2020).

  6. A. Gadducci, S. Cosio, and F. Fruzzetti, Anticancer Res., 40(11), 5995 – 6002 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. J.-Q. Ma, X.-H. Wang, L.-P. Tang, et al., Int. J. Clin. Exp. Med., 8(4), 5571 – 5575 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. M. Ruutu, J. Rautava, A. Turunen, et al., Cytotechnology, 70(1), 235 – 244 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. L. Hefler, C. Grimm, C. Tempfer, and A. Reinthaller, Anticancer Res., 30(4), 1257 – 1261 (2010).

    CAS  PubMed  Google Scholar 

  10. K. Baskaran, P. K. Kumar, K. Santha, and I. Sivakamasundari, J. Med. Sci. Res., 6(3), 74 – 79 (2018).

    Article  Google Scholar 

  11. E. Roura, N. Travier, T. Waterboer, et al., PLoS One, 11(3), e0151427 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. H. Xu, S. Egger, L. S. Velentzis, et al., Cancer Epidemiol., 55, 162 – 169 (2018).

    Article  PubMed  Google Scholar 

  13. S. Mitra, M. S. Lami, A. Ghosh, et al., Cancers, 12(3), 759 – 785 (2022).

    Article  Google Scholar 

  14. G. Garcia-Salazar, Z. Urban-Morlan, S. Mendoza-Elvira, et al., Intervirology, 66(1), 41 – 53 (2022).

    Article  PubMed  Google Scholar 

  15. A. Farooqui, F. Khan, I. Khan, et al., Biomed. Pharmacother., 97, 752 – 764 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. M. Saeed, J. Pharm. Res. Int., 32(25), 52 – 66 (2020).

    Article  Google Scholar 

  17. Y. B. Ko, B. R. Kim, S. L. Nam, et al., Cell. Signalling, 26(4), 777 – 783 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. R. Smolarczyk, T. Cichon, S. Matuszczak, et al., Arch. Immunol. Ther. Exp., 60(5), 391 – 399 (2012).

    Article  CAS  Google Scholar 

  19. G. Vergoten and C. Bailly, Med. Drug Discovery, 7, 100058 (2020).

    Article  Google Scholar 

  20. Instructions on Medical Use of Epigen Intim (2016).

  21. A. Wdowiak, N. Farahmandlou, A. Tajik, et al., J. Biol. Stud., 4(3), 106 – 119 (2021).

    Article  Google Scholar 

  22. P. Kumar, A. Nagarajan, and P. D. Uchil, Cold Spring Harbor Protoc., No. 6, 095505 (2018).

  23. J. L. Sebaugh, Pharm. Stat., 10(2), 128 – 134 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. I. A. Kirilyuk, V. A. Svyatchenko, D. A. Morozov, et al., Antibiot. Khimioter., 57(1), 3 – 12 (2012).

    CAS  Google Scholar 

  25. H. Hosseinzadeh and M. Nassiri-Asl, Phytother. Res., 29(12), 1868 – 1886 (2015).

    Article  PubMed  Google Scholar 

  26. R. Jain, M. A. Hussein, S. Pierce, et al., Pharmacol. Res., 178, 106138 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Satomi, H. Nishino, and S. Shibata, Anticancer Res., 25(6B), 4043 – 4047 (2005).

    CAS  PubMed  Google Scholar 

  28. G. Sharma, S. Kar, S. Palit, and P. K. Das, J. Cell Physiol., 227(5), 1923 – 1931 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. D. Wang, H. K. Wong, Y. B. Feng, and Z. J. Zhang, J. Neurooncol., 116(2), 221 – 230 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. J. E. Klaunig and Z. Wang, Curr. Opin. Toxicol., 7, 116 – 121 (2018).

    Article  Google Scholar 

  31. M. H. Nascimento and D. R. de Araujo, Future Pharmacol., 2, 1 – 15 (2022).

    Article  Google Scholar 

  32. D. Njus, P. M. Kelley, Y. J. Tu, and H. B. Schlegel, Free Radical Biol. Med., 159, 37 – 43 (2020).

    Article  CAS  Google Scholar 

  33. N. T. T. Nga, V. T. An, and D. D. Quang, Vietnam J. Sci. Technol., 57(4), 485 – 490 (2019).

    Google Scholar 

  34. A. R. Shahverdi, F. Shahverdi, E. Faghfuri, et al., Arch. Med. Res., 49(1), 10 – 17 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. J. Ji, P. Zuo, and Y. L. Wang, Nanoscale Res. Lett., 10(1), 453 – 461 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. T. E. Belokrinitskaya, Yu. N. Ponomareva, G. M. Lomneva, et al., Acta Biomed. Sci., No. 1, 143 – 147 (2005).

  37. M. Hong, J. Wang, C. Su, et al., Int. J. Gynecol. Cancer, 27(6), 1247 – 1255 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. F. Garrido, C. M. Wild, U. Jeschke, et al., Int. J. Mol. Sci., 24(3), 2815 – 2828 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. E. Zhang, Y. Zhang, Z. Fan, et al., Molecules, 25(8), 1960 – 1974 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. R. Lopez-Romero, M. Rodriguez-Esquivel, P. Romero-Morelos, et al., Int. J. Clin. Exp. Pathol., 12(9), 3208 – 3221 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Scholl, M. Popovic, A. De la Rochefordiere, et al., EBioMedicine, 43, 253 – 260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. T. Matsumoto, T. Suzuki, M. Nakamura, et al., Cancer Med., 12(9), 10816 – 10828 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J. Wei, Y. Wang, K. Shi, and Y. Wang, BioMed Res. Int., 2020, 8959210 (2020).

    PubMed  PubMed Central  Google Scholar 

  44. Q. Fan, T. Huang, X. Sun, et al., Exp. Ther. Med., 21(5), 414 – 424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Filimonova.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 58, No. 1, pp. 3 – 9, January, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filimonova, M.S., Shimanovskiy, N.L. Effect of Glycyrrhizic Acid on the Viability of Hela Cervical Adenocarcinoma Cell Line at Different Concentrations of Sex Steroid Hormones. Pharm Chem J (2024). https://doi.org/10.1007/s11094-024-03112-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11094-024-03112-2

Keywords

Navigation