Skip to main content
Log in

High-Performance Thin-Layer Chromatography Fingerprinting Analysis and Hepatoprotective Effects of Scrophularia striata Aerial Parts Against Acetaminophen-Induced Acute Hepatotoxicity in Mice

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The liver performs detoxification, making it vulnerable to damage by common hepatotoxic medicines such as acetaminophen. Finding new medicines to prevent and treat liver damage caused by hepatotoxic drugs is an important area of research. In this study, an Iranian endemic plant Scrophularia striata that belongs to the botanical family containing hepatoprotective compounds was selected for phytochemical, biochemical and histopathological studies against acetaminophen hepatotoxicity in mice. Animals were treated for 6 days with methanolic extract (100, 300, 1000 mg/kg) and then received an acetaminophen toxic dose (400 mg/kg) on the last day. Blood and liver tissue samples were prepared 24 hours later. HPTLC chromatograms showed different phytochemicals including phenolics and triterpenoids. The plant extract decreased the activity of liver enzymes and liver tissue injuries significantly. Our results showed a hepatoprotective effect of S. striata against acetaminophen-induced hepatotoxicity and indicated that these effects can be due to the presence of phenolic and triterpenoid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. A. Ramachandran and H. Jaeschke, Antioxid. Redox Signaling, 35(9), 718 – 733 (2021).

    Article  CAS  Google Scholar 

  2. A. L. Chiew and N. A. Buckley, Crit. Care Clin., 37(3), 543 – 561 (2021).

    Article  PubMed  Google Scholar 

  3. A. Ramachandran and H. Jaeschke, Gene Expression, 18(1), 19 – 30 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. B. Xu, Y. H. Xiao, Q. Y. Zhang, et al., Eur. J. Med. Chem., 145, 691 – 716 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. P. Saha, A. D. Talukdar, R. Nath, et al., Front. Pharmacol., 10, 509 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C. Wang, X. Gong, A. Bo, et al., Molecules, 25(2) (2020).

  7. V. Mozaffarian, A Dictionary of Iranian Plant Names Latin-English-Persian, Faehang Moaser, Tehran (2013), p. 497.

    Google Scholar 

  8. N. Tanideh, M. H. Haddadi, M. H. Rokni-Hosseini, et al., World J. Plast. Surg., 4(1), 16 – 23 (2015).

    Google Scholar 

  9. S. S. Mousavi, A. Karami, T. M. Haghighi, et al., Plants, 10(1) (2021).

  10. A. Amin, E. Tuenter, K. Foubert, et al., Front. Pharmacol., 8, 232 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. E. Reich and A. Schibli, High-performance thin-layer chromatography for the analysis of medicinal plants, Thieme (2007).

  12. H. Nikravesh, M. J. Khodayar, M. Mahdavinia, et al., Adv. Pharm. Bull., 8(2), 331 – 339 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Agatonovic-Kustrin, E. Kustrin, V. Gegechkori, and D. W. Morton, Mar. Drugs, 17(3), 148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. W. Oleszek, I. Kapusta and A. Stochmal, TLC of Triterpenes (Including Saponins), in: Thin Layer Chromatography in Phytochemistry, M. Waksmundzka-Hajnos, J. Sherma and T. Kowalska (eds), CRC Press, (2008), pp. 519 – 541.

  15. F. H. Kasten, The origins of modern fluorescence microscopy and fluorescent probes, in: Cell structure and function by microspectrofluorometry, E. Kohen (ed.), Academic Press, (1989), pp. 3 – 50.

  16. S. Baby, A. J. Johnson, B. Govindan, et al., Sci. Rep., 3(1), 1 – 6 (2013).

    Article  Google Scholar 

  17. M. Medic-Saric, I. Jasprica, A. Mornar, and Z. Males, Application of TLC in the isolation and analysis of flavonoids, in: Chromatographic Science Series, 99, 405 (2008).

  18. K. Karthika and S. Paulsamy, Indian J. Pharm. Sci., 77(1), 111 – 116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Pasdaran and A. Hamedi, Pharm. Biol. (Abingdon, U. K.), 55(1), 2211 – 2233 (2017).

  20. H. R. Monsef-Esfahani, R. Hajiaghaee, A. R. Shahverdi, et al., Pharm. Biol. (Abingdon, U. K.), 48(3), 333 – 336 (2010).

  21. P. Wexler, Encyclopedia of toxicology, Elsevier / Academic Press (2014).

  22. S. Schramm, N. Köhler and W. Rozhon, Molecules, 24(3), 498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. P. Mazraati and M. Minaiyan, Adv. Biomed. Res., 7, 67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. M. Abdel-Daim, A. I. Abushouk, R. Reggi, et al., J. Food Drug Anal., 26(2s), S78-S87 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. A. Hanafy, H. M. Aldawsari, J. M. Badr, et al., J. Evidence- Based Complementary Altern. Med., 2016, 4579149 (2016).

    Google Scholar 

  26. M. T. Olaleye, A. C. Akinmoladun, A. A. Ogunboye, and A. A. Akindahunsi, Food Chem. Toxicol., 48(8 – 9), 2200 – 2205 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. H. Shayani-Jam and D. Nematollahi, Chem. Commun. (Cambridge, U.K.), 46(3), 409 – 411 (2010).

  28. G. F. Rushworth and I. L. Megson, Pharmacol. Ther., 141(2), 150 – 159 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. S. Singh, L. S. Hynan and W. M. Lee, Dig. Dis. Sci., 58(5), 1397 – 1402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O. Sabzevari, A. Hosseini, H. Paydar, and H. R. Monsef-Esfahani, Toxicol. Lett., 180, S57 (2008).

    Article  Google Scholar 

  31. H. S. Garg, S. P. S. Bhandari, S. C. Tripathi, et al., Phytother. Res., 8(4), 224 – 228 (1994).

    Article  CAS  Google Scholar 

  32. H. M. Kim, M. J. Ahn and S. Lee, J. Med. Plants Res., 6(22), 3923 – 3930 (2012).

    CAS  Google Scholar 

  33. A. Venditti, C. Frezza, M. Riccardelli, et al., Nat. Prod. Res., 30(14), 1665 – 1669 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. H. Y. Kim, J. Park, K. H. Lee, et al., Toxicology, 282(3), 104 – 111 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. E. Fernández-Martínez, R. A. Bobadilla, M. S. Morales-Ríos, et al., Med. Chem., 3(5), 475 – 9 (2007).

    Article  PubMed  Google Scholar 

  36. E. J. Lee, S. R. Kim, J. Kim, and Y. C. Kim, Planta Med., 68(5), 407 – 411 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. L. Aguirre, M. P. Portillo, E. Hijona, and L. Bujanda, World J. Gastroenterol., 20(23), 7366 – 7380 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Zarei.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavandipour, A., Jangravi, Z., Kondori, B.J. et al. High-Performance Thin-Layer Chromatography Fingerprinting Analysis and Hepatoprotective Effects of Scrophularia striata Aerial Parts Against Acetaminophen-Induced Acute Hepatotoxicity in Mice. Pharm Chem J 57, 1476–1485 (2023). https://doi.org/10.1007/s11094-023-03013-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-03013-w

Keywords

Navigation