Skip to main content

Advertisement

Log in

Anti-Inflammatory, Wound Healing, and Hepatoprotective Effects of Ethanol Extract of Rice Bran in Rodent Models

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Rice bran is an essential co-product in rice meals with many biological activities. This study was aimed at evaluating the anti-inflammatory, wound healing, and hepatoprotective effects of ethanol extract of rice bran in vivo. The anti-inflammatory and hepatoprotective studies were performed in rats, and the wound-healing study was conducted in mice. Carrageenan and carbon tetrachloride were used to induce inflammation and hepatotoxicity respectively. The wound-healing activity of rice bran extract (RBE) was tested by creating a circular wound using a biopsy punch. For all the studies, animals were treated with RBE at a dose rate of 100 mg/kg and 200 mg/kg body weight (bwt). It was observed that RBE dose-dependently reduced the carrageenan-induced paw edema and wound-closing time (9–10 days) compared with that of control rats (12 days). Histological examination of the inflamed rat paw tissue showed massive infiltration of inflammatory cells, which was significantly reduced by RBE treatment. Intra-peritoneal injection of CCl4 increased the serum AST and ALT levels, which were significantly (p < 0.05) decreased by RBE treatment in a dose-dependent manner. The histological section of the liver tissue showed severe hepatic cell damage in CCl4-injected animals, which were distinctly regenerated by RBE treatment (200 mg/kg bwt). These results demonstrated that RBE has potent anti-inflammatory, wound-healing, and hepatoprotective effects in the experimental animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Hernandez, M. E. Rodriguez-Alegria, F. Gonzalez, et al., J. Am. Oil Chem. Soc., 77(2), 177–180 (2000).

    Article  CAS  Google Scholar 

  2. R. H. Liu, J. Cereal Sci., 46(3), 207–219 (2007).

    Article  CAS  Google Scholar 

  3. A. Sirikul, A. Moongngarm and P. Khaengkhan, Asian J. Food Agro-Industry, 2, 731–743 (2009).

    Google Scholar 

  4. C. K. Pushpan, V. Shalini, G. Sindhu, et al., Biomed. Pharmacother., 83, 1387–1397 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. A. J. Henderson, C. A. Ollila, A. Kumar, et al., Adv. Nutr., 3(5), 643–653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. S. L. De Munter, F. B. Hu, D. Spiegelman, et al., PLoS Med., 4(8), e261 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  7. N. Quan, K. Kobayashi, Y. Matsunami, et al., Open Nutr. J., 6(1) 12–20 (2012).

    CAS  Google Scholar 

  8. M. M. Most, R. Tulley, S. Morales, et al., Am. J. Clin. Nutr., 81(1), 64–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. G. F. Shattat, Biomed. Pharmacol. J., 7(1), 399–409 (2015).

    Google Scholar 

  10. E. T. Callcott, C. L. Blanchard, P. Oli, et al., Mol. Nutr. Food Res., 62(24), 1800840 (2018).

    Article  Google Scholar 

  11. T. Kitisin, N. Saewan, and N. Luplertlop, Plant Omics, 8(1), 69–77 (2015).

    CAS  Google Scholar 

  12. R. W. Johnson, Brain, Behav., Immun., 43, 1–8 (2015).

  13. L. Umeyama, S. Kasahara, M. Sugawara, Tradit. Kampo Med., 8(1), 60–65 (2021).

    Article  CAS  Google Scholar 

  14. I. Zarei, D. G. Brown, N. J. Nealon, E. P. Rice, Rice, 10(1), 24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. C. A. Schmidt, R. Murillo, T. Bruhn, et al., J. Nat. Prod., 73(12), 2035–2041 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. D. Coppini, P. Paganizzi, P. Santi, et al., Cosmet. News, 136, 15–20 (2001).

    Google Scholar 

  17. M. J. Lerma-García, J. M. Herrero-Martínez, E. F. Simó-Alfonso, et al., Food Chem., 115(2), 389–404 (2009).

    Article  Google Scholar 

  18. Y. Antula, D. I. Neno, A. Srihardyastutie, et al., J. Exp. Life Sci., 9(2), 110–115 (2019).

    Article  Google Scholar 

  19. M. A. Toori, B. Joodi and H. Sadeghi, Avicenna J. Phytomed., 5(3), 238 (2015).

    CAS  Google Scholar 

  20. P. Muangpruan, T. Janruengsri, P. Chutoam, et al., Malar. Chemother., Control Elimination, 4(2), 135 (2015).

  21. K. Wunjuntuk, A. Kettawan, S. Charoenkiatkul, et al., J. Med. Food, 19(1), 15–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Kasahara, H. Hikino, S. Tsurufuji, et al., Planta Med., 51(04), 325–331 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Ma, Y. Li, X. Li, et al., Int. J. Mol. Sci., 14(12), 23980–23992 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. V. A. Tramontina, M. A. N. Machado, G. D. R. N. Filho, et al., Braz. Dent. J., 13(1), 11–16 (2002).

    PubMed  Google Scholar 

  25. T. Hussain, B. Tan, Y. Yin, et al., Oxid. Med. Cell. Longevity, 2016 (2016).

  26. R. Medzhitov, Nature, 454(7203), 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. V. Shalini, A. Jayalekshmi, and A. Helen, Mol. Immunol., 66(2), 229–239 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Z. Ghlissi, N. Sayari, R. Kallel, et al., Biomed. Pharmacother., 84, 115–122 (2016).

    Article  PubMed  Google Scholar 

  29. E. Yadav, D. Singh, P. Yadav, et al., RSC Adv., 8(38), 21621–21635 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Shailajan, S. Menon, S. Pednekar, et al., J. Ethnopharmacol., 138(1), 99–10 (2011).

    Article  PubMed  Google Scholar 

  31. S. Lucas, Headache, 56(2), 436–446 (2016).

    Article  PubMed  Google Scholar 

  32. I. Ammar, S. Barda, M. Mzid, et al., Int. J. Biol. Macromol., 81, 483–490 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. R. Jeyadevi, T. Sivasudha, A. Rameshkumar, et al., J. Funct. Foods, 138(1), 99–104 (2013).

    Google Scholar 

  34. M. Repetto, J. Semprine and A. Boveris, Lipid Peroxid., 1, 3–30 (2012).

    Google Scholar 

  35. Y. Park, D. J. Hunter, D. Spiegelman, et al., JAMA, 294(22), 2849–2857 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. M. L. Contreras-Zentella and R. Hernández-Muñoz, Oxid. Med. Cell. Longevity, 2016 (2016).

  37. Y. L. Hou, Y. H. Tsai, Y. H. Lin, et al., BMC Complementary Altern. Med., 14(1), 1–11 (2014).

    Article  Google Scholar 

  38. T. Shibata, H. Nagayasu, H. Kitajo, Oncol. Rep., 15(4), 869–874 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the special allocation project for the year 2021–2022 under the Ministry of Science and Technology (MoST), Bangladesh (No. 39.00.0000.009.06.009.14.019.21/BS–41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md.Zahorul Islam.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Islam, P., Rafiq, K. et al. Anti-Inflammatory, Wound Healing, and Hepatoprotective Effects of Ethanol Extract of Rice Bran in Rodent Models. Pharm Chem J 57, 1410–1417 (2023). https://doi.org/10.1007/s11094-023-03004-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-03004-x

Keywords

Navigation