Skip to main content
Log in

Synthesis, Characterization, and Antimicrobial Evaluation of Some Novel 3′-(6-(Substituted Phenyl)-4-Phenyl-6H-1,3-Thiazine-2-yl)Spiro[Indoline-3,3′-Isothiazolidine]-2,4′-Dione Derivatives

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Thiazolidinediones (TZDs) are the vital component of a number of pharmaceuticals and biologically active compounds. Owing to the diversified pharmaceutical applications of TZD derivatives, we conceived a new synthetic approach for the preparation of a series of spiro-thiazolidinediones by the reaction of synthesized TZDs with thioglycolic acid. Melting point and thin-layer chromatography ascertained the purity of the synthesized compounds. Elemental analysis, FTIR, 1H and 13C NMR spectral studies have been used for the characterization of the synthesized compounds. The synthesized chalcones, thiazine, TZDs, and spiro-thiazolidinediones are in accordance with the standard values of different spectral techniques. The appearance of a sharp singlet of two protons of CH2 at 2.5 – 3.0 ppm in 1H NMR of spiro-thiazolidinediones, which was absent in TZDs, suggests the formation of a spiro ring. All the novel compounds were screened for their antimicrobial activity on Gram-negative (P. aeruginosa, E. coli) and Gram-positive (B. subtilis, S. aureus) bacteria. The final synthesized compounds exhibited excellent to good responses against the tested microbes. The change of the substituent and its position plays a significant role in the activity of the synthesized spiro-thiazolidinediones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Soleiman, Open Catal. J., 4, 18 – 26 (2011).

    Article  CAS  Google Scholar 

  2. G. Shukla, A. K. Tiwari, V. K. Singh, et al., Chem. Biol. Drug. Des., 72(6), 533 – 539 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. V. Srivastava, A. M. Srivastava, A. K. Tiwari, et al., Chem. Biol. Drug. Des., 74(3), 297 – 301 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. A. K. Tiwari, A. K. Mishra, A. Bajpai, et al., Bioorg. Med. Chem. Lett., 16(17), 4581 – 4585 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. E. A. Deniz, O. H. A. Mehtap, A. Oðuzhan, et al., Synth. Commun., 48(19), 2510 – 2521 (2018).

    Article  Google Scholar 

  6. S. Aggarwal, D. Sinha, A. K. Tiwari, et al., Spectrochim. Acta. A Mol. Biomol. Spectrosc., 143, 309 – 318 (2015).

    CAS  Google Scholar 

  7. A. L. Acosta, and A. D. Rodríguez, J. Nat. Prod., 55(7), 1007 – 1012 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. M. Sannigrahi, Tetrahedron, 55, 9007 – 9071 (1999).

    Article  CAS  Google Scholar 

  9. M. M. Youssef and M. A. Amin, Molecules, 15(12), 8827 – 8840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. R. M. Shaker, Y. R. Ibrahim, F. F. Abdel-Latif, et al., Arkivoc., 2, 57 – 68 (2011).

    Google Scholar 

  11. Y. W. Chin, A. A. Salim, B. N. Su, et al., J. Nat. Prod., 71(3), 390 – 395 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. W. L. Wang, T. J. Zhu, H. W. Tao, et al., Chem. Biodivers., 4(12), 2913 – 2919 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Varun, Sonam, and R. Kakkar, Med. Chem. Comm., 10(3), 351 – 368 (2019).

  14. R. P. Chinnasamy and R. Sundararajan, J. Saudi Chem. Soc., 17(3), 337 – 343 (2016).

    Google Scholar 

  15. D. W. Kim, M. J. Curtis-Long, H. J. Yuk, et al., Food Chem., 153, 20 – 27 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. X. B. Chen, H. Y. Zhu, and K. Bao, Acta Pharmacol. Sin., 42, 1160 – 1170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R. Nath, S. Pathania, G. Grover, et al., J. Mol. Str., 1222, 128900 (2020).

    Article  CAS  Google Scholar 

  18. R. E. Ferraz de Paiva, E. G. Vieira, D. Rodrigues da Silva, et al., Front. Mol. Biosci., 7, 627272 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Y. Z. Zhang, H. Z. Du, H. J. Liu, et al., Arch. Pharm., 353(3), e1900299 (2020).

    Article  Google Scholar 

  20. Y. Ding, L. Zhao, Y. Fu, et al., Molecules, 26(1), 176 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. M. Tugrak, H. I. Gul, K. Bandow, et al., Bioorg. Chem., 90, 103095 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. B. Salehi, C. Quispe, I. Chamkhi, et al., Front. Pharmacol., 11, 592654 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. S. Narwal, S. Kumar, and P. K. Verma, Res. Chem. Intermed., 47, 1625 – 1641 (2021).

    Article  CAS  Google Scholar 

  24. H. A. Jasim, L. Nahar, M. A. Jasim, et al., Biomolecules, 11(8), 1203 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. L. Gaonkar and U. N. Vignesh, Res. Chem. Intermed., 43, 6043 – 6077 (2017).

    Article  CAS  Google Scholar 

  26. S. Farooq, Z. Ngaini, and N. A. Mortadza, Bull. Korean Chem. Soc., 41, 918 – 924 (2020).

    Article  CAS  Google Scholar 

  27. A. Rani, A. Anand, K. Kumar, et al., Expert. Opin. Drug Discov., 14(3), 249 – 288 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. N. Agrawal, Curr. Chem. Lett., 119 – 138 (2021).

  29. I. Mishra, R. Mishra, S. Mujwar, et al., J. Heterocycl. Chem., 57, 2304 – 2329 (2020).

    Article  CAS  Google Scholar 

  30. A. Vaidya, D. Pathak, and K. Shah, Chem. Biol. Drug Des., 97, 572 – 591 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. P. P. Singh, S. Bansal, K. Rawat, et al., Res. J. Chem. Environ., 25(5) (2021).

  32. P. P. Singh, M. Kumar and J. K. Ajish, Res. J. Chem. Environ., 25(11), 48 (2021)

    Article  CAS  Google Scholar 

  33. K. El-Adl, H. Sakr, S. S. A. El-Hddad, et al., Arch. Pharm., 354(7), e2000491 (2021).

    Article  Google Scholar 

  34. B. Sever, M. D. Altýntop, Y. Demir, et al., Open Chem., 19(1), 347–357 (2021).

    Article  CAS  Google Scholar 

  35. M. Oguchi, K. Wada, H. Honma, et al., J. Med. Chem., 43(16), 3052 – 3066 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Sucheta, S. Tahlan, and P. K. Verma, Chem. Cent. J., 11(1), 130 (2017).

  37. N. Long, A. Le Gresley, and S. P. Wren, Chem. Med. Chem., 16(11), 1716 – 1735 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. H. E. Lebovitz, Curr. Diab. Rep., 19(12), 151 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Z. Huiying, C. Guangying, and Z. Shiyang, J. Enzyme Inhib. Med. Chem., 34(1), 981–989 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. S. Kotha, G. Sreevani, L. U. Dzheileva, et al., Beilstein J. Org. Chem., 15, 2774 – 2781 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Dhara, S. Paladhi, G. C. Midya, et al., Org. Biomol. Chem., 9(10), 3801 – 3807 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. C. B. Apaydýn, M. Tansuyu, Z. Cesur, et al., Bioorg. Chem., 112, 104958 (2021).

    Article  Google Scholar 

  43. J. Sun, L. L. Zhang, E. Y. Xia, et al., J. Org. Chem., 74(9), 3398 – 3401 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. V. S. Rao, S. V. S. Gupta, P. Giridhar, et al., Ind. J. Heterocycl. Chem., 9, 247 – 250 (2000).

    CAS  Google Scholar 

  45. W. L. Yang, F. F. Tang, F. S. He, et al., Org. Lett., 17, 4822?4825 (2015).

  46. A. Srivastava, N. Srivastava, and U. N. Tripathi, Bull. Chem. Soc. Ethiop., 35(1), 61 – 76 (2021).

    Article  CAS  Google Scholar 

  47. A. Srivastava, N. Srivastava, U. N. Tripathi, et al., Chem. Chem. Technol., 13(1), 23 – 32 (2019).

    Article  CAS  Google Scholar 

  48. U. H. Shah, and S. G. Patel, Asian J. Pharm. Clin. Res., 10(2), 403 – 406 (2017).

    Google Scholar 

  49. C. Mahon and D. Lehman, Textbook of Diagnostic Microbiology, 6 (2018).

  50. J. Howard, and M. D. Balbi, Pediatr. Rev., 25(8), 284 – 288 (2004).

    Article  Google Scholar 

  51. A. Sirogianni, G. G. Kournoutou, A. Bougas, et al., Antibiotics (Basel), 10(4), 394 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishna Srivastava, Raj Bahadur Singh or Abhishek Srivastava.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, K., Singh, R.B., Srivastava, A. et al. Synthesis, Characterization, and Antimicrobial Evaluation of Some Novel 3′-(6-(Substituted Phenyl)-4-Phenyl-6H-1,3-Thiazine-2-yl)Spiro[Indoline-3,3′-Isothiazolidine]-2,4′-Dione Derivatives. Pharm Chem J 57, 992–1000 (2023). https://doi.org/10.1007/s11094-023-02976-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02976-0

Keywords

Navigation