Skip to main content

Advertisement

Log in

In Vitro Evaluation of Anti-Angiogenic Efficacy, Cell Migration Activity and Cell Survival Effect Against Hydrogen Peroxide-Induced Damage of Prunetin

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Anti-angiogenic isoflavonoids are gaining attention as a novel approach in the prevention and treatment of tumor progression and metastasis. These phenylpropanoid compounds as bioactive phytoestrogens exhibit various pharmacological activities including antimicrobial, anti-inflammatory and antioxidant effects. The purpose of this study was to evaluate the anti-angiogenic, antioxidant and cell migration effects of prunetin in in vitro studies. The antioxidant activity of prunetin was performed against H2O2-induced cell damage on Vero cells. The cell migration effect was comparatively studied with HaCat cells. The anti-angiogenic potential of prunetin was assessed using an in vitro HET-CAM model. The strongest anti-angiogenic effect of prunetin was observed at 100 and 200 μM on the chorioallantoic membranes of hen eggs when compared to the control group. Similarly, the statistical analysis of data showed that prunetin treatment at 200 μM significantly induced cell migration with a ratio of 98.65 ± 0.46% on HaCaT cells. Additionally, the excessive protective effect of prunetin against H2O2-induced cytotoxicity in Vero cells was shown with 90% cell viability at the highest concentration. In conclusion, prunetin can stimulate keratinocytes migration and can induce antioxidant mechanisms which involves direct inhibition of the ROS generation and anti-angiogenic responses. It is suggested that prunetin can be applied to support anti-cancer treatment given its promising results since isoflavonoids possess antioxidant, anti-inflammatory and cell migration properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. K. M. Apaya, T. M. Chang, F. L. Shyur, Pharmacol. & Ther., 162, 58 – 68 (2016).

    Article  CAS  Google Scholar 

  2. L. Wang, F. Yang, X. Zhao, et al., Food Chem., 275, 339 – 345 (2019).

    Article  CAS  Google Scholar 

  3. D. Ribatti, History of research on tumor angiogenesis, Springer, DORDRECHT, Netherlands (2009), pp.1– 17.

    Book  Google Scholar 

  4. C. Chen, Y. Wang, S. Chen, et al., Taiwan J. Obstetrics & Gynecology, 59, 403 – 408 (2020).

    Google Scholar 

  5. W. J. Bae, D. H. Kim, W. W. Lee, et al., J. Ethnopharmacol., 162,1–6 (2015).

    Article  PubMed  Google Scholar 

  6. H. S. Parekh, G. Liu, M. Q. Wei, Mol. Cancer, 20(8),1 – 21 (2009).

    Google Scholar 

  7. Y. Ling, Ann. Palliat. Med., 2(3),141–152 (2013).

    PubMed  Google Scholar 

  8. V. Kuete, P. L. Sandjo, M. N. G. Kwamou, et al., Phytomedicine, 21(5), 682 – 688 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Z. Y. Zheng, G. Deng, R. Guo, et al., Phytochemistry, 166, 112075 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. D. F. Birt, S. Hendrich, W. Wang, Pharmacol. Ther., 90(2–3), 157 – 177 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. T. B. Clarkson, J. Nutr., 132(3), 566 – 569 (2002).

    Article  Google Scholar 

  12. Y. Y. Liu, Q. J. Wu, Y. R. Fan, et al., Fish and Shellfish Immunol., 100, 238 – 245 (2020).

    Article  CAS  Google Scholar 

  13. V. K. Sandhua, Y. E. Demiray, Y. Yanagawa, et al., Hormones and Behavior, 119, 104637 (2020).

    Article  Google Scholar 

  14. H. Hu and H. Li, Biomed. & Pharmacother., 106, 1469 – 1477 (2018).

    Article  CAS  Google Scholar 

  15. G. Yang, I. Ham, Y. H. Choi, Food & Chem. Toxicol., 58, 124 – 132 (2013).

    Article  CAS  Google Scholar 

  16. K. C. Karayıldırım, A. Nalbantsoy, K. N. U. Yavasoglu, Mol. Biol. Rep.,1– 18 (2021).

  17. T. T. Liao, Y. L. Shi, J. W. Jia, et al., Biomed. Environ. Sci., 23(3), 219 – 229 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. N. Ammerman, M. Beier-Sexton, A. Azad, Curr. Protoc. Microbiol.,1– 10 (1998).

  19. S. I. Kanno, A. Shouji, K. Asou, et al., J. Pharmacol. Sci., 92, 166 – 170 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. J. H. Lee, T. K. Kim, M. C. Kang, et al., Food Biosci., 52, 102396 (2023).

    Article  CAS  Google Scholar 

  21. R. P. Araldi, T. C. Melo, T. B. Mendes, et al., Biomed. Pharmacother., 72, 74 – 82 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. C. C. Liang, A. Y. Park, J. L. Guan, Nature Protocols, 2(2), 329 – 333 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Q. Chen, L. Di, Y. Zhang, et al., J. Ethonopharmacol., 259, 112948 (2020).

    Article  CAS  Google Scholar 

  24. L. Elberkirsch, R. L. Harzic, D. Scheglmann, et al., Eur. J. Pharm. Sci., 168, 106046 (2022).

    Article  Google Scholar 

  25. L. Krenn and D. H. Paper, Phytomedicine, 16(12), 1083 – 1088 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. J. Burgermeister, D. H. Paper, H. Vogl, et al., Carbohydr. Res., 337, 1459 – 1466 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. S. R. Sulaiman, D. H. Basavarajappa, W. T. Corson, Exp. Eye Res., 129, 161 – 171 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. V. P. Palacios, L. J. Robinson, C. W. Borysenko, et al., J. Biol. Chem., 280, 13720–7 (2005).

    Article  Google Scholar 

  29. A. Bouslimi, C. Bouaziz, I. Ayed-Boussema, et al., Toxicology, 29(251),1–7 (2008).

    Article  Google Scholar 

  30. C. Wang, L. Li, D. Fu, et al., Eur. J. Med. Chem., 176, 135 – 148 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. A. Sarfraz, M. Javeed, A. M. Shah, et al., Sci. Total Environ., 722, 137907 (2020).

    Article  CAS  Google Scholar 

  32. P. Joshi, G. S. Yadaw, S. Joshi, et al., South Afr. J. Botany, 130, 440 – 447 (2020).

    Article  CAS  Google Scholar 

  33. I. Arranz-Valsero, L. Soriano-Romaní, L. García-Posadas, et al., Exp. Eye Res., 125, 183 – 192 (2015).

    Article  Google Scholar 

  34. S. Galarza, H. Kim, N. Atay, et al., BioRxiv, doi: https://doi.org/10.1101/627281 (2019).

    Article  Google Scholar 

  35. S. Shetty, S. Udupa, L. Udupa, Evidence Based Complement. and Alternat. Medicine, 5, 95 – 101 (2008).

    Article  Google Scholar 

  36. S. Razia, H. Park, E. Shin, et al., J. Ethnopharmacol., 290, 115096 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. I. S. Kamarazaman, N. A. M. Ali, F. Abdullah, et al., Arab. J. Chem., 15, 103871 (2022).

    Article  CAS  Google Scholar 

  38. C. M. Nemitz, S. N. F. Fachel, A. Beckenkamp, et al., Industr. Crops & Products, 105, 193 – 202 (2017).

    Article  CAS  Google Scholar 

  39. L. Elberkirsch, R. Le Harzic, D. Scheglmann, et al., Eur. J. Pharm. Sci., 168, 106046 (2022).

    Article  Google Scholar 

  40. A. A. Öztürk, H. T. Kıyan, Microvasc. Res., 128, 103961 (2020).

    Article  PubMed  Google Scholar 

  41. G. Renda, N. F. Yalçın, E. Nemutlu, et al., J. Ethnopharmacol., 148, 423 – 432 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ege University Scientific Research Project (Project Number: FGA-2020-21853) and the Scientific and Technological Research Council of Turkey (TUBITAK, Grant no: 119Z028). The author would like to thank Dr. Jermaine Ma from the Department of Political Science, Bilkent University, Ankara, Turkey, for providing kind advice during drafting of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çinel KÖKSAL KARAYILDIRIM.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statements

Ethical approval was not required because the experiments were conducted using in vitro cell culture techniques.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KARAYILDIRIM, Ç.K. In Vitro Evaluation of Anti-Angiogenic Efficacy, Cell Migration Activity and Cell Survival Effect Against Hydrogen Peroxide-Induced Damage of Prunetin. Pharm Chem J 57, 809–815 (2023). https://doi.org/10.1007/s11094-023-02950-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02950-w

Keywords

Navigation