Skip to main content
Log in

Investigation of the Synergistic Protective Effect of Natural Antioxidants on DNA Damage

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Three different natural antioxidants (tea polyphenol, ferulic acid, α-lipoic acid) and their mixture were estimated for the potential protective action on DNA damage. Antioxidant activity of the products was evaluated through protection against DNA damage induced by 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH). In this system, the mixture of tea polyphenol and ferulic acid showed maximum potential activity, while the α-lipoic acid alone was determined as the weakest antioxidant in gel electrophoresis assay. Results of this study demonstrated that tea polyphenol, ferulic acid and α-lipoic acid exhibited good synergistic effects, and all the mixtures were more resistant than any antioxidant alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. A. K. Das, V. Rajkumar, A. K. Verma, et al., Int. J. Food. Sci. Tech., 47(3), 585 – 591 (2012).

    Article  CAS  Google Scholar 

  2. S. H. Lee and C. K. Park, Biochem. Biophys. Res. Commun., 464(2), 467 – 472 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. E. N. Frankel and A. S. Meyer, J. Sci. Food. Agric., 80(13), 1925 – 1941 (2000).

    Article  CAS  Google Scholar 

  4. M. A. Shah, S. J. D. Bosco, and S. A. Mir, Meat. Sci., 98(1), 21 – 33 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. L. Jornot, H. Petersen, and A. F. Junod, Biochem. J., 335, 85 – 94 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Ma, Y. M. Yin, H. L. Liu, et al., Curr. Org. Chem., 15(15), 2627 – 2640 (2011).

    Article  CAS  Google Scholar 

  7. K. Sakulnarmrat, G. Srzednicki, and I. Konczak, LWT Food. Sci. Technol., 57(1), 366 – 375 (2014).

    CAS  Google Scholar 

  8. M. Stojadinovic, J. Radosavljevic, J. Ognjenovic, et al., Food Chem., 136(3 – 4), 1263 – 1271 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. K. Sevgi, B. Tepe, and C. Sarikurkcu, Food. Chem. Toxicol., 77, 12 – 21 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. D. K. Maurya and T. P. A. Devasagayam, Cancer. Biother. Radiopharm., 28(1), 51 – 57 (2013).

    CAS  PubMed  Google Scholar 

  11. J. S. Johansson, J. Biol. Chem., 272(29), 17961 – 17965 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. D. Chen, V. Milacic, M. S. Chen, et al., Histol. Histopathol., 23(4), 487 – 496 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. X. Mao, C. Gu, D. Chen, et al., Oncotarget, 8(46), 81649 – 81661 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. K. J. Siebert, J. Agric. Food Chem., 49(2), 851 – 858 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. A. Altintas, K. Davidsen, C. Garde, et al., Free Radical Biol. Med., 101, 143 – 153 (2016).

    Article  CAS  Google Scholar 

  16. Z. Q. Liu and Z. Qun, Chem. Rev., 110(10), 5675 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. A. Valavanidis, T. Vlachogianni, K. Fiotakis, et al., Int. J. Environment. Res. Public Health, 10(9), 3886 – 3907 (2013).

    Article  Google Scholar 

  18. G. Waris and H. Ahsan, J. Carcinogen., 5, 13 – 14 (2006).

    Article  Google Scholar 

  19. C. Cabello-Verrugio, F. Simon, C. Trollet, et al., Oxid. Med. Cell. Longev., 2017, 1 – 2 (2017).

    Article  Google Scholar 

  20. Z. Sroka and W. Cisowski, Food. Chem. Toxicol., 41(6), 753 – 758 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. H. Hatate, Y. Nagata, and M. Kochi, J. Am. Oil. Chem. Soc., 39(1), 42 – 46 (2009).

    Article  Google Scholar 

  22. L. R. Richards, H. Benghuzzi, M. Tucci, et al., Biomed. Sci. Instrum., 39, 402 – 407 (2003).

    CAS  PubMed  Google Scholar 

  23. E. B. Burlakova, N. M. Storozhok, and N. G. Khranova, Voprosy Pitaniya, No. 4, 53 – 58 (1990).

    Google Scholar 

  24. A. Aktumsek, G. Zengin, G. O. Guler, et al., Food. Chem. Toxicol., 55, 290 – 296 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. H. Celik and E. Arinç, J. Pharm. Pharm. Sci., 13(2), 231 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. K. N. Kim, S. H. Cha, E. A. Kim, et al., Int. J. Pharmacol., 8(6), 527 – 534 (2012).

    Article  Google Scholar 

  27. B. Tepe, S. Degerli, S. Arslan, et al., Fitoterapia, 82(2), 237 – 246 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. M. Shin, D. O. Gang, and J. Y. Song, Food. Sci. Biotechnol., 19(4), 951 – 956 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqi Yang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, M., Zhong, H., Gao, X. et al. Investigation of the Synergistic Protective Effect of Natural Antioxidants on DNA Damage. Pharm Chem J 57, 663–668 (2023). https://doi.org/10.1007/s11094-023-02935-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02935-9

Keywords

Navigation