Skip to main content
Log in

Development of a Simple Isocratic HPLC-UV Method for the Simultaneous Analysis of Repaglinide and Metformin Hydrochloride in Nanoemulsion Formulations and Commercial Tablets

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

This study was aimed to develop and validate an HPLC-UV method for simultaneous analysis of metformin HCl (MET HCl) and repaglinide (REP) in nanoemulsion (NE) formulations and commercial tablets. MET HCl and REP-containing NE formulations (NE-1 and NE-2) were prepared. The droplet size and PDI values of NE formulations were found in the range of 100.631 ± 0.504–173.356 ± 2.432 nm and 0.128 ± 0.005–0.227 ± 0.004, respectively. Separation and analysis were performed on a C18 column (4.6 × 250 mm; 5 μm) using a mobile phase including methanol:ethanol:ultrapure water mixture at pH adjusted to 3.0 with formic acid (30:40:30, v/v/v) and 242 nm was used for UV detection. The method is linear in a concentration range of 1 – 48 μg/mL for both MET HCl and REP. The retention times of MET HCl and REP were found to be 2.1 and 8.2 min, respectively. The limits of detection (LOD) were 0.174 μg/mL for MET HCl and 0.210 μg/mL for REP. The limits of quantification (LOQ) were 0.526 μg/mL for MET HCl and 0.637 μg/mL for REP. The values of relative error and relative standard deviation (%) for both active substances were found to be lower than ± 2% and 2%, respectively. This method was successfully applied for the simultaneous analysis of MET HCl and REP in NEs and commercial tablets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. M. Cetin and S. Sahin, Drug Deliv., 23(8), 2796 – 2805 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. N. T. Shurrab and E-S. A. Arafa, Obes. Med., 17, 100186 (2020).

  3. Y. W. Wang, S. J. He, X. Feng, et al., Drug Des. Devel. Ther., 11, 2421 – 2429 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. F. Khonsari, P. Zakeri-Milani, and M. Jelvehgari, Iran J. Pharm. Res., 13(1), 67 – 80 (2014).

    CAS  Google Scholar 

  5. S. K. Chinnaiyan, D. Karthikeyani and V. R. Gadela, Pharm. Nanotechnol., 6(4), 253 – 263 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. J. Wang, D. Chin, C. Poon, et al., J. Control Release, 329, 1198 – 1209 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. J. Akhtar, H. H. Siddiqui, Badruddeen, Curr. Drug Deliv., 11(2), 243 – 252 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. EMA: Repaglinide. Available from: https://www.ema.europa.eu/en/documents/product-information/repaglinideaccord-epar-product-informationen.pdf.

  9. L. J. Scott, Drugs, 72(2), 249 – 272 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. X. D. Yang, W. S. Li, Y. J. Tian, et al., Trop. J. Pharm. Res., 15(6), 1123 – 1128 (2016).

    Article  CAS  Google Scholar 

  11. J. Akhtar, H. H. Siddiqui, S. Fareed, et al., Drug Deliv., 23(6), 2026 – 2034 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. M. K. Rawat, A. Jain, and S. Singh, J. Pharma Sci, 100(6), 2406 – 2417 (2011).

    Article  CAS  Google Scholar 

  13. J. Xie, N. Li, X. Jiang, et al., Diabetes Metab. Syndr. Obes,, 12, 519 – 526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Z. Zhu, T. Yang T, Y. Zhao, et al., Asian J. Pharm. Sci., 9(4), 218 – 225 (2014).

  15. EMA: Metformin hydrochloride. Available from: https://www.ema.europa.eu/en/documents/referral/metformin-article-31-referral-annex-ien.pdf.

  16. FDA Orange Book: Approved Drug Products with Therapeutic Equivalence Evaluations. Available from: https://www.accessdata.fda.gov/scripts/cder/ob/searchproduct.cfm.

  17. TÝTCK-Türkiye Ýlaç ve Týbbi Cihaz Kurumu. Available from: https: // www.titck.gov.tr/kubkt

  18. N. S. Abdelhamid, M. T. Elsaady, N. W. Ali, et al., Anal. Chem. Lett., 9(3), 418 – 429 (2019).

    Article  CAS  Google Scholar 

  19. K. B. Ahir, E. M. Patelia, and A. Shah, J. Chromatogr. Sep. Tech., 4(1), 1000166 (2013).

    Google Scholar 

  20. S. Aslan and B. Yýlmaz, Am. J. Anal. Chem., 8, 541 – 552 (2017).

    Article  CAS  Google Scholar 

  21. M. M. Fouad and N. S. Rashed, JGTPS, 5(3), 1844 – 1848 (2014).

    Google Scholar 

  22. D. S. Jahnavi, D. V. N. Rao, and Y. R. Reddy, GJRA, 5(10), 8 – 11 (2016).

    Google Scholar 

  23. S. S. Joshi, R. R. Nahire, N. R. Shastri, et al., Acta Chromatogr., 24(3), 419 – 432 (2012).

    Article  CAS  Google Scholar 

  24. M. A. Mahrouse and N. T. Lamie, Microchem. J., 147, 691 – 706 (2019).

    Article  CAS  Google Scholar 

  25. D. R. Patel, L. J. Patel, and M. M. Patel, Asian J. Res. Chem., 4(3), 500 – 505 (2011).

    Google Scholar 

  26. V. G. Prasanth, S. Cicy Eapen, P. Velekkat, et al., Am. J. Pharm. Health, 8(6), 16 – 31 (2020).

  27. L. K. Soni, T. Narsinghani, and M. Jain, J. Liq. Chromatogr. Relat. Technol., 35(3), 385 – 392 (2012).

    Article  CAS  Google Scholar 

  28. K. Sonia, K. Manikandan, and M. Nappinnai, et al., Int. J. Pharm. Qual. Assur., 7(3), 46 – 50 (2016).

    Google Scholar 

  29. R. Tatiparthi, D. Duraiswamy, and C. Kothapalli, FABAD J. Pharm. Sci., 35, 69 – 75 (2010).

    Google Scholar 

  30. International Conference on Harmonization (ICH). ICH Guidelines Q2 (R1). Validation of Analytical Procedures: Text and Methodology. Available from: http://www.ema.europa.eu/docs/enGB/documentlibrary/Scientificguideline/2009/09/WC500002662.pdf.

  31. E. Sigward, N. Mignet, P. Rat, et al., Int. J. Nanomed., 8(1), 611 – 625 (2013).

    Google Scholar 

  32. M. Çelebier, T. Reçber, E. Koçak, et al., Braz. J. Pharm. Sci., 49(2), 359 – 366 (2013).

    Article  Google Scholar 

  33. A. Gumieniczek, A. Berecka-Rycerz, T. Mroczek, et al., Molecules, 24(24), 4430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. T. da Trindade, A. C. Kogawa, and H. R. N. Salgado, Crit. Rev. Anal. Chem., 48(1), 66 – 72 (2018).

    Article  PubMed  Google Scholar 

  35. H. A. Mowafy, F. K. Alanazi, and G. M. El Maghraby, Saudi Pharm. J., 20(1), 29 – 34 (2012).

    Article  PubMed  Google Scholar 

  36. International Conference on Harmonization (ICH). Harmonized Tripartite Guideline: Stability Testing of New Drug Substances and Products: Q1A (R2), The Steering Committee: Geneva (2003). Available from: https://database.ich.org/sites/default/files/Q1A%28R2%29%20Guideline.pdf.

  37. N. Osel, T. Planinšek Parfant, A. Kristl, et al., Pharmaceutics, 13(7), 1065 (2021).

  38. G. A. Shabir, J. Chromatogr. A, 987(1 – 2), 57 – 66 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Cetin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, A.B.U., Cetin, M. Development of a Simple Isocratic HPLC-UV Method for the Simultaneous Analysis of Repaglinide and Metformin Hydrochloride in Nanoemulsion Formulations and Commercial Tablets. Pharm Chem J 57, 318–326 (2023). https://doi.org/10.1007/s11094-023-02884-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02884-3

Keywords

Navigation