Skip to main content

Advertisement

Log in

Metabolism of Various Arsenic Compounds upon Ingestion of Brown Algae by Warm-Blooded Organisms (Review)

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Literature data on the metabolism in warm-blooded organisms of inorganic and organic arsenic compounds contained in brown algae are summarized. Their final metabolites are shown to be low-toxic compounds of pentavalent arsenic that are excreted from the body during short-term intake of brown algae but accumulate in it during long-term consumption. Intermediate metabolites (including organic forms) contain toxic trivalent arsenic compounds. Acertain amount of toxic trivalent arsenic compounds can be present in the gastrointestinal tract because of the reversible oxidation of trivalent arsenic compounds to pentavalent arsenic compounds. These compounds pose a risk to human health when brown algae are regularly ingested as foods, dietary supplements, and herbal medicines. Regulation of the total arsenic content in medicinal herbal raw materials and medicinal herbal preparations is shown to be preferable to regulation of the content of inorganic arsenic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. F. Ferdouse, S. L. Holdt, R. Smith, et al., FAO Globefish Research Programme, Vol. 124, (2018), p. 114.

  2. A. V. Podkorytova, A. N. Roshchina, and N. V. Burova, Innovative Directions in Integration of Science, Education, and Manufacturing [in Russian], Kerch? (2020), pp. 271 – 276.

  3. C. Luvonga, C. A. Rimmer, L. Y. Lee, and S. B. Lee, J. Food Compos. Anal., 96, 103729 (2021).

    Article  CAS  Google Scholar 

  4. M. MacMonagail and L. Morrison, Compr. Anal. Chem., 85, 267 – 310 (2019).

    Article  Google Scholar 

  5. M. K. Nazal, IntechOpen, 10, 1 – 14 (2019).

    Google Scholar 

  6. M. Rose, J. Lewis, N. Langford, et al., Food Chem. Toxicol., 45(7), 1263 – 1267 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. C. Luvonga, C. A. Rimmer, L. L. Yu, and S. B. Lee, J. Agric. Food Chem., 68(4), 943 – 960 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. V. F. Taylor, Z. Li, V. Sayarath, et al., Sci. Rep., 7(1), 1 – 9 (2017).

    Article  Google Scholar 

  9. G. Park, D. Kang, M. Davaatseren, et al., Food Sci. Biotechnol., 28(2), 615 – 622 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. M. Fontcuberta, J. Calderon, J. R. Villalbi, et al., J. Agric. Food Chem., 59(18), 10013 – 10022 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. S. Ramasamy, J. S. Lee, and S. J. S. Flora (eds.), Handbook of Arsenic Toxicology, Academic Press, London, San Diego, Waltham, Oxford (2015), pp. 95 – 120.

    Book  Google Scholar 

  12. B. K. Thakur and V. Gupta, Arsenic Water Resources Contamination, Springer, Cham (2020), pp. 257 – 271.

    Book  Google Scholar 

  13. R. N. Ratnaike, Postgrad. Med. J., 79(933), 391 – 396 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O. V. Bagryantseva and S. A. Khotimchenko, Vopr. Pitan., 90(6), 6 – 17 (2021).

    CAS  PubMed  Google Scholar 

  15. A. K. Patlolla, T. I. Todorov, P. B. Tchounwou, et al., Microchem. J., 105, 101 – 107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. M. Steinmaus, C. Ferreccio, J. A. Romo, et al., Cancer Epidemiol. Biomarkers Prev., 22, 623 – 630 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. R. K. Kwok, R. B. Kaufmann, and M. Jakariya, J. Health Popul. Nutr., 24(2), 190 – 205 (2006).

    PubMed  Google Scholar 

  18. F. Parvez, G. A. Wasserman, P. F. Litvak, et al., Environ. Health Perspect., 119, 1665 – 1670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Monograph 01 / 2008:1426 Kelp, European Pharmacopoeia, 10.0, European Department for the Quality of Medicines & Health Care, Strasbourg (2020), pp. 1494 – 1495.

  20. PM 2.5.0080.18 (2018), Laminaria thalli (seaweed), State Pharmacopoeia of the Russian Federation, XIVth Ed., Vol. 4, Moscow (2018), pp. 6181 – 6187; URL: https://docs.rucml.ru/feml/pharma/v14/vol4/999/.

  21. Articles of botanical origin (561), The United States Pharmacopeia 43, The National Formulary 38, (2021), p. 6774. URL: https://www.uspnf.com/.

  22. F. Leong, X. Hua, and M. Wang, Chin. Med., 15(1), 1 – 20 (2020).

    Article  Google Scholar 

  23. C. Almela, J. M. Laparra, D. Velez, et al., J. Agric. Food Chem., 53(18), 7344 – 7351 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. P. Andrewes, D. M. DeMarini, K. Funasaka, et al., Environ. Sci. Technol., 38(15), 4140 – 4148 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. V. R. Moreira, Y. A. R. Lebron, L. V. S. Santos, et al., Process Saf. Environ. Prot., 148, 604 – 623 (2021).

    Article  CAS  Google Scholar 

  26. J. Matschullat, Sci. Total Environ., 249(1 – 3), 297 – 312 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. D. S. Tawfik and R. E. Viola, Biochemistry, 50(7), 1128 – 1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. R. Villa-Bellosta and V. Sorribas, Toxicol. Appl. Pharmacol., 232(1), 125 – 134 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. F. L. Hellweger and U. Lall, Environ. Sci. Technol., 38(24), 6716 – 6723 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Y. Xu, B. Ma, and R. Nussinov, J. Phys. Chem. B, 116(16), 4801 – 4811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A. Geiszinger, W. Goessler, S. N. Pedersen, and K. A. Francesconi, Environ. Toxicol. Chem., 20(10), 2255 – 2262 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. K. Kalia, D. B. Khambholja, and S. J. S. Flora (ed.), Handbook of Arsenic Toxicology, Academic Press, London, San Diego, Waltham, Oxford (2015), pp. 675 – 700.

    Book  Google Scholar 

  33. V. Taylor, B. Goodale, A. Raab, et al., Sci. Total Environ., 580, 266 – 282 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. J. Feldmann and E. M. Krupp, Anal. Bioanal. Chem., 399(5), 1735 – 1741 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. V. F. Taylor and B. P. Jackson, Chemosphere, 163, 6 – 13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. M. Ronan, D. B. Stengel, A. Raab, et al., Chemosphere, 186, 17 – 23 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. S. Garcia-Salgado, M. A. Quijano, and M. M. Bonilla, Anal. Chim. Acta, 714, 38 – 46 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Y. Fu, N. Yin, X. Cai, et al., Environ. Pollut., 280, 116958 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Y. F. Zhao, J. F. Wu, D. R. Shang, et al., Int. J. Food Sci., 2014, 1 – 12 (2014).

    Article  Google Scholar 

  40. Y. Shimoda, Y. Suzuki, Y. Endo, et al., J. Health Sci., 56(1), 47 – 56 (2010).

    Article  CAS  Google Scholar 

  41. E. Marafante, M. Vahter, H. Norin, et al., J. Appl. Toxicol., 7(2), 111 – 117 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. I. Koch, K. McPherson, P. Smith, et al., Mar. Pollut. Bull., 54, 586 – 594 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. J. M. Laparra, D. Velez, and R. Montoro, Appl. Organomet. Chem., 18(12), 662 – 669 (2004).

    Article  CAS  Google Scholar 

  44. D. Desideri, C. Roselli, L. Feduzi, et al., J. Toxicol. Environ. Health, 81(8), 212 – 217 (2018).

    Article  CAS  Google Scholar 

  45. C. Garcia-Sartal, V. Romaris-Hortas, M. del Carmen Barciela-Alonso, et al., Microchem. J., 98(1), 91 – 96 (2011).

  46. J. Moreda-Pineiro, A. Moreda-Pineiro, V. Romaris-Hortas, et al., Trends Anal. Chem., 30(2), 324 – 345 (2011).

    Article  CAS  Google Scholar 

  47. D. S. Dheeman, C. Packianathan, J. K. Pillai, and B. P. Rosen, Chem. Res. Toxicol., 27(11), 1979 – 1989 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. X. Song, Z. Geng, X. Li, et al., Biochimie, 92(10), 1397 – 1406 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. T. Hayakawa, Y. Kobayashi, X. Cui, and S. Hirano, Arch. Toxicol., 79(4), 183 – 191 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. M. Molin, S. M. Ulven, L. Dahl, et al., Environ. Res., 112, 28 – 39 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. C. Newcombe, A. Raab, P. N. Williams, et al., J. Environ. Monit., 12(4), 832 – 837 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. A. Popowich, Q. Zhang, and X. C. Le, Natl. Sci. Rev., 3(4), 451 – 458 (2016).

    Article  CAS  Google Scholar 

  53. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer (IARC), Vol. 84, Lyon (2004), pp. 39 – 27035.

  54. X. Lu, L. L. Arnold, S. M. Cohen, et al., Anal. Chem., 75(23), 6463 – 6468 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. J. M. Laparra, D. Velez, R. Barbera, et al., J. Agric. Food Chem., 55(14), 5892 – 5897 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. J. Feldmann, K. John, and P. Pengprecha, Fresenius J. Anal. Chem., 368(1), 116 – 121 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. J. M. Laparra, D. Velez, R. Montoro, et al., J. Agric. Food Chem., 51(20), 6080 – 6085 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Agency for Toxic Substances and Disease Registry (ATSDR), GA: U. S. Department of Health and Human Services, Atlanta (2007).

  59. T. Chavez-Capilla, M. Beshai, W. Maher, et al., Food Chem., 212, 189 – 197 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. S. Meyer, M. Matissek, S. M. Muller, et al., Metallomics, 6(5), 1023 – 1033 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. M. Calatayud, E. Bralatei, J. Feldmann, et al., J. Agric. Food Chem., 61(49), 12164 – 12170 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. K. A. Francesconi, R. Tanggaar, C. J. McKenzie, and W. Goessler, Clin. Chem., 48(1), 92 – 101 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. B. M. Gamble, P. A. Gallagher, J. A. Shoemaker, et al., Analyst, 127(6), 781 – 785 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. A. Hata, K. Yamanaka, G. Endo, et al., E3S Web Conf., 1, 26006 (2013).

  65. M. Calatayud, C. Xiong, G. Du Laing, et al., Environ. Sci. Technol., 52(24), 14422 – 14435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. X. C. Le, W. R. Cullen, and K. J. Reimer, Clin. Chem., 40(4), 617 – 624 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. M. Li, G. Li, L. Zhu, et al., PLoS One, 9(3), e91106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. R. Raml, W. Goessler, P. Traar, et al., Chem. Res. Toxicol., 18(9), 1444 – 1450 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. B. S. Choi, S. J. Choi, D. W. Kim, et al., Arch. Environ. Contam. Toxicol., 58(1), 222 – 229 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. H. R. Hansen, A. Raab, K. A. Francesconi, and J. Feldmann, Environ. Sci. Technol., 37(5), 845 – 851 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. D.Wang, Y. Shimoda, H. Kurosawa, et al., Int. J. Environ. Anal. Chem., 95(5), 379 – 389 (2015).

    Article  CAS  Google Scholar 

  72. N. A. Beresford, N. M. J. Crout, and R. W. Mayes, J. Agric. Sci., 136(3), 331 – 344 (2001).

    Article  CAS  Google Scholar 

  73. A. Raab, H. R. Hansen, L. Zhuang, and J. Feldmann, Talanta, 58(1), 67 – 76 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. G. Caumette, S. Ouypornkochagorn, C. M. Scrimgeour, et al., Environ. Sci. Technol., 41(8), 2673 – 2679 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. V. M. Shchukin, A. A. Erina, E. S. Lisman, and O. A. Vaganova, Vedomosti Nauchn. Tsentra Eksp. Sredstv Med. Primen. Regul. Issled. Eksp. Lek. Sredstv, 9(3), 167 – 172 (2019).

  76. General Monograph 07 / 2014:20427 Heavy metals in herbal drugs and herbal drug preparations, European Pharmacopoeia, 10.0, European Department for the Quality of Medicines & Health Care, Strasbourg (2020), pp. 158 – 160.

  77. GPM 1.5.3.009.15 Determination of heavy-metal and arsenic contents in medicinal raw material and herbal plant preparations, State Pharmacopoeia of the Russian Federation (2018), pp. 2370 – 2382; URL: https://docs.rucml.ru/feml/pharma/v14/vol2/555/.

  78. M. Bartel, F. Ebert, L. Leffers, et al., J. Toxicol., 2011, 1 – 8 (2011).

    Article  Google Scholar 

  79. S. McSheehy and J. Szpunar, J. Anal. At. Spectrom., 15(1), 79 – 87 (2000).

    Article  CAS  Google Scholar 

  80. E. Ender,M. A. Subirana, A. Raab, et al., J. Anal. At. Spectrom., 34(11), 2295 – 2302 (2019).

    Article  CAS  Google Scholar 

  81. A. H. Petursdottir and H. Gunnlaugsdottir, Microchem. J., 144, 45 – 50 (2019).

    Article  CAS  Google Scholar 

  82. A. Duinker, M. Kleppe, E. Fjære, et al., Rapport fra havforskningen, (2020); https://imr.brage.unit.no/imr-xmlui/bitstream/handle/11250/2712528/RH+2020-44.pdf?sequence=2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Shchukin.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 57, No. 1, pp. 37 – 42, January, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukin, V.M., Erina, A.A., Kuz’mina, N.E. et al. Metabolism of Various Arsenic Compounds upon Ingestion of Brown Algae by Warm-Blooded Organisms (Review). Pharm Chem J 57, 83–88 (2023). https://doi.org/10.1007/s11094-023-02854-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02854-9

Keywords

Navigation