Skip to main content
Log in

Formation of βs-Cu Complexes Via pH-Metric Titration for Antimicrobial Studies

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

β-Sitosterol (βs) is one of important phytosterols, which is well known for its ability to lower the cholesterol level and is also useful in the treatment of various diseases. Keeping in mind its biological activities, complexation of βs with Cu(II) was performed and it was found that βs-Cu complex enhances the biological activities of βs. The pH-metric titration technique was used to control the formation of metal (M)—ligand (L) complexes βs-Cu in solutions with variable mole ratio of metal ion to ligand, 1:1, 1:2 and 1:3 (denoted as ML, ML2 and ML3 respectively). The complex formation was indicated by change in the solution color due to change in pH. Results obtained by the mole ratio variation and isomolar series method revealed the formation of ML2 complex. The synthesized βs-Cu complex was characterized by elemental analysis and various spectroscopic techniques including IR, UV/Vis, and 1H NMR. The results of analysis indicated that complexes contained Cu(II) ions coordinated via OH and C=C groups of the steroid. The data of antimicrobial activity assay showed higher activity of βs-Cu in 1:2 (ML2) form as compared to other mole ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. K. H. Pegel, S. Afr. J. Sci., 93, 263 – 268 (1997).

    CAS  Google Scholar 

  2. K. A. Kim, I. A. Lee, W. Gu, et al., Mol. Nutr. Food Res., 58, 963 – 972 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. R. Tao, C. Z. Wang, Z. W. Kong, Molecules, 18, 2166 – 2182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. K. Hac-Wydro, Colloids Surf. B: BioiInterfaces, 110, 113 – 119 (2013).

    Article  CAS  Google Scholar 

  5. J. Quilez, P. Garcia-Lorda, J. Salas-Salvado, Clin. Nutr., 22, 343351 (2003).

    Article  Google Scholar 

  6. Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: the Use of Metals in Medicine, M. Gielen, E. R. T. Tiekink (Eds.), Wiley: Chichester (2005), pp. 145 – 208.

  7. J. E. Weder, C. T. Dillon, T. W. Hambley, et al., Coord. Chem. Rev., 232, 95 – 126 (2002).

    Article  CAS  Google Scholar 

  8. D. C.Ware, P. J. Brothers and G. R. Clark, J. Chem. Soc., Dalton Trans., 6, 925 – 932 (2000).

  9. M. Nakai, F. Sekiguchi, M. Obata, et al., J. Inorg. Biochem., 99, 1275 – 1282 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. T. H. A. Chaviara, P. C. Christidis, A. Papageorgiou, et al., J. Inorg. Biochem., 99, 2102 – 2109 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. P. J. Sadler and Z. Guo, Pure Appl. Chem., 70, 863 – 871 (1998).

    Article  CAS  Google Scholar 

  12. B. Kastenholz, Protein Pept. Lett., 13, 503 – 508 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. B. Kastenholz, Protein Pept. Lett., 14, 389 – 393 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. W. M. Kwiatek, T. Drewniak, M. Gajda, et al., J. Trace Elem. Med. Biol., 16, 155 – 160 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. M. T. Tarafder, K. T. Jin, K. A. Crouse, et al., Polyhedron, 21, 2547 – 2554 (2002).

    Article  CAS  Google Scholar 

  16. R. A. Sanchez-Delgado, K. Lazardi, L. Rincon, et al., J. Med. Chem., 36, 2041 – 2043 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. C. Orvig, M. J. Abrams, Chem. Rev., 99, 2201 – 2204 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. S. J. Lippard and J. M. Beng, Principles of Bioinorganic Chemistry, University Science Books: Mile Valley, California (1994).

    Google Scholar 

  19. A. Bagchi, P. Mukherjee, and A. Raha, Int. J. Recent Adv. Pharm. Res., 5, 171 – 180 (2015).

    Google Scholar 

  20. W. R. Walker, S. J. Beveridge, and M. W. Whitehouse, Agents Actions Suppl., 8, 359 – 367 (1981).

    PubMed  Google Scholar 

  21. S. Dutta, S. Padhye, and V. Mckee, Inorg. Chem. Commun., 7, 1071 – 1074 (2004).

    Article  CAS  Google Scholar 

  22. J. Forestier and A. Certonciny, Presse Medicale, 54, 884 – 885 (1946).

    Google Scholar 

  23. J. R. Sorenson and W. Hangarter, Inflammation, 2, 217 – 238 (1977).

    Article  CAS  PubMed  Google Scholar 

  24. S. K. Bharti and S. K. Singh, Der. Pharm. Lett., 1, 39 – 51 (2009).

    CAS  Google Scholar 

  25. C. Perez, M. Paul, and P. Bazerque, Acta Biol. Med. Exp., 15, 113 – 115 (2009).

    Google Scholar 

  26. Wuthi-udomlert, Mansuang, and O. Vallisuta, Pharmacogn. J., 3, 69 – 73 (2011).

  27. R. Smyth, S. Bengtsson, J. Cloke, and G. Kahlmeter, Clin. Microbiol. Infect., 14, 857 (2008).

    Google Scholar 

  28. Y. Vaghasiya, H. Patel, and S. Chanda, Afr. J. Biotechnol., 10, 15788 – 15794 (2011).

    Article  Google Scholar 

  29. A. Zirino and S. Yamamoto, Limnol. Oceanogr., 17, 661 – 671 (1972).

    Article  CAS  Google Scholar 

  30. A. L. Sekaly, R. Mandal, N. M. Hassan, et al., Anal. Chim. Acta., 402, 211 – 221(1999).

    Article  CAS  Google Scholar 

  31. M. I. Bulatov and I. P. Kalinkin, Practical Handbook of Photometric Analytical Methods, 5th Edn. Revised, Khimiya: Leningrad (1986).

    Google Scholar 

  32. A. Dakshinamoorthy and V. Venugopal, J. Radioanal. Nucl. Chem., 3, 425 – 429 (2005).

    Article  Google Scholar 

  33. P. Mondal and A. Bose, BioImpacts, 9, 115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. S. Alturiqi, A. N. Alaghaz, R. A. Ammar, and M. E. Zayed, J. Chem., 1 – 17 (2018).

  35. S. Chandraleka, and G. Chandramohan, Afr. J. Pure Appl. Chem., 8, 162 – 175 (2014).ý

  36. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley: New York (1970), pp. 386 – 400.

    Google Scholar 

  37. N. Nawar, and N. M. Hosny, Transit. Met. Chem., 25, 1 – 8 (2000).

    Article  CAS  Google Scholar 

  38. R. K. Reddy, P. B. Ka Suneetha, C. S. C. Karigar, et al., J. Chil. Chem. Soc., 53, 1653 – 1657 (2008).

  39. A.Wahab, A. Sultana, K. M. Khan, et al., Pak. J. Pharm. Sci., 5, 1984 – 1987 (2012).

    Google Scholar 

  40. Z. H. Chohan, H. Pervez, A. Rauf, et al., J. Enzyme Inhib. Med. Chem., 19, 417 – 423 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. A. A. Abou-Hussein and W. Linert, Spectrochim. Acta A: Mol. Biomol., 117, 763 – 771 (2014).

    Article  CAS  Google Scholar 

  42. S. B. Bumrela and S. R. Naik, Int. J. Phytomed., 3, 204 (2011).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmeen Bibi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, Y., Mahmood, T., Shah, S.N. et al. Formation of βs-Cu Complexes Via pH-Metric Titration for Antimicrobial Studies. Pharm Chem J 56, 1535–1543 (2023). https://doi.org/10.1007/s11094-023-02825-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02825-0

Keywords

Navigation