Skip to main content

Advertisement

Log in

Dipyridamole Delivery Systems Based on Biomolecules for Aerosol Therapy

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Inhalation delivery systems, which find use in aerosol therapy, are currently attracting increased attention. A drug administered for inhalation therapy through the respiratory tract has increased bioavailability. Special attention should be paid to the size and shape of the microparticles, which should be in the range 1 – 3 μm and spherical. Microspheres of composites of dipyridamole with bovine serum albumin and lysozyme were produced using a spray-drying procedure in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. I. Krasnyuk, N. B. Demina, M. N. Anurova, and N. L. Solov’eva, Biopharmacy or Principles of Pharmaceutical Development, Manufacturing and Design Bases of Dosage Forms [in Russian], GEOTAR-Media, Moscow (2019).

  2. M. Gibaldi, M. Lee, and A. Desai, Gibaldi’s Drug Delivery Systems in Pharmaceutical Care, American Society of Health-System Pharmacists, Bethesda (2007).

    Google Scholar 

  3. G. S. Banker and C. T. Rhodes, Modern Pharmaceutics, Marce Dekker, New York (2006).

    Google Scholar 

  4. D. M. Peters and D. T. Hulisz, Pharm. Choice Newsl., 17(7), 334 – 340 (2015).

    Google Scholar 

  5. A. Florence and E. Salole, Routes of Drug Administration, Butterworth & Co., London (1990).

    Google Scholar 

  6. J. S. Patton, C. S. Fishburn, and J. G. Weers, Proc. Am. Thorac. Soc., 1, 338 – 344 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. M. Lengyel, N. Kallai-Szabo, V. Antal, et al., Sci. Pharm., 87, Art. ID 20 (2019).

  8. A. O. Elzoghby, W. M. Samy, and N. A. Elgindy, J. Controlled Release, 161, 38 – 49 (2012).

    Article  CAS  Google Scholar 

  9. A. Varanko, S. Saha, and A. Chilkoti, Adv. Drug Deliv. Rev. 156, 133 – 187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. H. Malekzad, H. Mirshekari, P. Sahandi Zangabad, et al., Crit. Rev. Biotechnol., 38(1), 47 – 67 (2018).

  11. A. Aguilera-Garrido, T. del Castillo-Santaella, Y. Yang, et al., Adv. Colloid Interface Sci., 290, Art. ID 102365 (2021).

  12. C. N. Nassab, M. Arooj, I. A. Shehadi, et al., J. Phys. Chem., 125(28), 7750 – 7762 (2021).

    Article  CAS  Google Scholar 

  13. A. Galukhin, M. A. Khelkhal, A. Gerasimov, et al., Energy Fuels, 30, 7731 – 7737 (2016).

    Article  CAS  Google Scholar 

  14. A. V. Gerasimov, M. A. Ziganshin, and V. V. Gorbatchuk, World Appl. Sci. J., 24, 920 – 927 (2013).

    CAS  Google Scholar 

  15. M. A. Ziganshin, A. A. Bikmukhametova, A. V. Gerasimov, et al., Prot. Met. Phys. Chem. Surf., 50, 49 – 54 (2014).

    Article  CAS  Google Scholar 

  16. M. A. Ziganshin, A. V. Gerasimov, S. A. Ziganshina, et al., J. Therm. Anal. Calorim., 125, 905 – 912 (2016).

    Article  CAS  Google Scholar 

  17. A. E. Boldyrev, M. A. Ziganshin, N. M. Lyadov, et al., Russ. Chem. Bull., 69(3), 608 – 614 (2020).

    Article  CAS  Google Scholar 

  18. T. Jarunglumlert and K. Nakagawa, Drying Technol., 31, 1459 – 1465 (2013).

    Article  CAS  Google Scholar 

  19. U. Bhardwaj and D. J. Burgess, Int. J. Pharm., 388, 287 – 294 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. O. Trott and A. J. Olson, J. Comput. Chem., 31, 455 – 461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. E. F. Pettersen, T. D. Goddard, C. C. Huang, et al., J. Comput. Chem., 25(13), 1605 – 1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. N. J. Babu and A. Nangia, Cryst. Growth Des., 11, 2662 – 2679 (2011).

    Article  CAS  Google Scholar 

  23. A. E. Boldyrev, M. A. Ziganshin, N. M. Lyadov, et al., Pharm. Chem. J., 55, 942 – 946 (2021).

    Article  CAS  Google Scholar 

  24. G. P. Johari, S. Ram, G. Astl, and E. Mayer, J. Non-Cryst. Solids, 116, 282 – 285 (1990).

    CAS  Google Scholar 

  25. C. P. F. Borges and M. Tabak, Spectrochim. Acta, Part A, 50, 1047 – 1056 (1994).

    Article  Google Scholar 

  26. W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, New-York (1999).

    Google Scholar 

  27. D. E. Potts, D. C. Levin, and S. A. Sahn, Chest, 70, 328 – 331 (1976).

    Article  CAS  PubMed  Google Scholar 

  28. M. Gibaldi and S. Feldman, J. Pharm. Sci., 56(10), 1238 – 1242 (1967).

    Article  CAS  PubMed  Google Scholar 

  29. R. W. Korsmeyer, R. Gurnya, E. Doelker, et al., Int. J. Pharm., 15(1), 25 – 35 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Program for Strategic Academic Leadership of Kazan (Volga Region) Federal University (Priority-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gerasimov.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 11, pp. 53 – 58, November 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldyrev, A.E., Zubaidullina, L.S., Ziganshin, M.A. et al. Dipyridamole Delivery Systems Based on Biomolecules for Aerosol Therapy. Pharm Chem J 56, 1496–1501 (2023). https://doi.org/10.1007/s11094-023-02820-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02820-5

Keywords

Navigation