Skip to main content
Log in

Comparison of the Independent and Combined Effects of Aerobic Training and Ozone Therapy on Selected Heart Variables in Rats with Osteoarthritis

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

There are shreds of evidence that osteoarthritis is a risk factor for cardiovascular disease. Regular exercise and ozone therapy independently can prevent such diseases; however, their combined effect was not investigated until now. The current study was aimed to compare the independent and combined effects of aerobic training and ozone therapy on mitochondrial fission 1 protein (FIS1) and mitofusin 2 (MFN2) gene expressions, KI67 protein expression, and percentage collagen deposition in the heart tissue of rats with osteoarthritis. Thirty rats were randomly divided into five groups (six per group), named healthy control, osteoarthritis control, osteoarthritis training, osteoarthritis ozone, and osteoarthritis training + ozone. The interventions were performed according to the group name (aerobic training: run on the treadmill five sessions/week, 30 – 50 min/session for 8 weeks; ozone therapy: 20 μg/mL, once/week, for three weeks). Rat heart tissue was collected 48 h after the last intervention. Data were analyzed using two-way ANOVA and P < 0.05 was considered as significant effect. The results showed that osteoarthritis intervention significantly increased the expression of FIS-1 and MFN-2 genes as well as the percentage of collagen degradation in heart tissue. Osteoarthritis also decreased expression of the heart KI67 protein. Aerobic training and ozone therapy independently positively affect mentioned variables; however, the synergic effect was seen just for the percentage of collagen degradation. In conclusion, the present study confirms effectiveness of the aerobic exercise and ozone therapy concerning research variables and shows that combination of the exercise and ozone therapy had a greater effect than using either alone in improving collagen degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. D. J. Hunter, J. J. McDougall, and F. J. Keefe, Rheum. Dis. Clin. North Am., 34(3), 623 – 643 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. J. A. Prior, K. P. Jordan, and U. T. Kadam, Rheumatology (Oxford), 53(10), 1794 – 802 (2014).

    Article  PubMed  Google Scholar 

  3. B. Heidari, Caspian J. Intern. Med., 2(2), 205 – 212 (2011).

  4. A. Urman, N. Taklalsingh, C. Sorrento, et al., Sci. Fed J. Cardiol., 2(3), 1000019 (2018).

    Google Scholar 

  5. K. Mc Namara, H. Alzubaidi, and J. K. Jackson, Integr. Pharm. Res. Pract., 8, 1 – 11 (2019).

  6. G. Siasos, V. Tsigkou, M. Kosmopoulos, et al., Ann. Transl. Med., 6(12), 256 – 256 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. A. V. Kuznetsov, S. Javadov, R. Margreiter, et al., Antioxidants (Basel, Switzerland), 8(10), 454 (2019).

  8. A. R. Hall, N. Burke, R. K. Dongworth, et al., Brit. J. Pharmacol., 171(8), 1890 – 1906 (2014).

    Article  CAS  Google Scholar 

  9. R. Yu, S.-B. Jin, U. Lendahl, et al., EMBO J., 38(8), e99748 (2019).

  10. G. Chandhok, M. Lazarou, and B. Neumann, Biol. Rev. Cambridge Phil. Soc., 93(2), 933 – 949 (2018).

    Article  Google Scholar 

  11. A. O. J. Agboola, A. A. F. Banjo, C. C. Anunobi, et al., ISRN Oncol., 2013, 675051 (2013).

  12. L. Zhu, Z. Chen, K. Han, et al., Evid. Based Complem. Alter. Med., 2020, 2902136 (2020).

    Google Scholar 

  13. M. A. Horn and A. W. Trafford, J. Mol. Cell. Cardiol., 93, 175 – 185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. C. C. Lopes de Jesus, F. C. Dos Santos, L. M. O. B. de Jesus, et al., PloS One, 12(7), e0179185-e0179185 (2017).

  15. M. Rezaie, M. A. Azarbayjani, M. Peeri, et al., Pharm. Biomed. Res., 6(1), 45 – 52 (2020).

  16. J. K. Cooney, R.-J. Law, V. Matschke, et al., J. Aging Res., 2011, 681640 – 681640 (2011).

  17. S. L. Manoto, M. J. Maepa, and S. K. Motaung, Saudi J. Biol. Sci., 25(4), 672 – 679 (2018).

  18. M. E. Fernández Cuadros, O. S. Pérez Moro, M. J. Albaladejo Florin, et al., Revista de la Sociedad Española del Dolor, 4(1), e41821 (2017).

  19. X. Feng and L. Beiping, J. Clin. Diagn. Res., 11(9), UC01-UC03 (2017).

  20. Y. Zhao, B. Liu, and C.-J. Liu, J. Visual. Exp., 84, e50924-e50924 (2014).

    Google Scholar 

  21. S. S. Liu, P. Zhou, and Y. Zhang, Mol. Med. Rep., 13(3), 1999 – 2006 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. C. Lopes de Jesus, F. C. Dos Santos, L. de Jesus, et al., PLoS One, 12(7), e0179185 (2017).

  23. S. Nikbin, A. Derakhshideh, M. Hozouri Tarighe, et al., Environ. Sci. Pollut. Res. Int., 27(14), 17229 – 17242 (2020).

  24. S. Nikbin, A. Tajik, P. Allahyari, et al., Environ. Toxicol., 35(7), 783 – 793 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. A.-M. Joseph, P. J. Adhihetty, and C. Leeuwenburgh, J. Physiol., 594(18), 5105 – 5123 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. A. J. Trewin, B. J. Berry, and A. P. Wojtovich, Antioxidants (Basel, Switzerland), 7(1), 7 (2018).

  27. E. Barbieri, D. Agostini, E. Polidori, et al., Oxid. Med. Cell. Longev., 2015, 917085 (2015).

  28. A. Peyravi, N. Yazdanpanahi, H. Nayeri, et al., J. Food Biochem., 44(2), e13125 (2020).

  29. D. A. Brown, J. B. Perry, M. E. Allen, et al., Nat. Rev. Cardiol., 14(4), 238 – 250 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. A. V. Poznyak, E. A. Ivanova, I. A. Sobenin, et al., Biology, 9(6), 137 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. L. A. Sena and N. S. Chandel, Mol. Cell, 48(2), 158 – 167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C. Guo, L. Sun, X. Chen, et al., Neur. Regener. Res., 8(21), 2003 – 2014 (2013).

    CAS  Google Scholar 

  33. H. S. Buttar, T. Li, and N. Ravi, Exp. Clin. Cardiol., 10(4), 229 – 249 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. D. Tian and J. Meng, Oxid. Med. Cell. Longev., 2019, 3756750 – 3756750 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. O. Merin, E. Attias, D. Elstein, et al., J. Card. Surg., 22(4), 339 – 42 (2007).

    Article  PubMed  Google Scholar 

  36. W. Meng, Y. Xu, D. Li, et al., Biomed. Pharmacother., 88, 1090 – 1097 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. O. Seyam, N. L. Smith, I. Reid, et al., Med. Gas Res., 8(3), 103 – 110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Sagai and V. Bocci, Med. Gas Res., 1, 29 – 29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Asadi, P. Farzanegi, and M. A. Azarbayjani, Social Determinants of Health, 4(3), 162 – 170 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Matinhomaee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandi, A., Matinhomaee, H. & Moradi, L. Comparison of the Independent and Combined Effects of Aerobic Training and Ozone Therapy on Selected Heart Variables in Rats with Osteoarthritis. Pharm Chem J 56, 1033–1040 (2022). https://doi.org/10.1007/s11094-022-02748-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02748-2

Keywords

Navigation