Skip to main content
Log in

PLGA-Gentamicin and PLGA-Hydroxyapatite-Gentamicin Microspheres for Medical Applications

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The purpose of this study was to create biodegradable composites using a synthetic polymer of polylactic-co-glycolic acid (PLGA), in which gentamicin or gentamicin and hydroxyapatite were included in order to achieve a local prolonged release of the drug in orthopedic disorders. The physico-chemical characterization of the biomaterial was achieved by Fourier-transform infrared spectroscopy (FT-IR), HPLC with diode array detector (DAD), and scanning electron microscopy (SEM). To determine whether the antibiotic inclusion in biomaterials alters its antibacterial activity, several studies were conducted on pathogenic bacteria present in bone infections (Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli). SEM analysis showed that the surface of PLGA microspheres was modified to become slightly rough with submicron pores, which would favor the gentamicin release. Particle size distribution studied by DLS in PLGA-gentamicin and PLGA-HA-gentamicin presents small particles with diameters up to 450 nm. By HPLC-DAD we find out that the drug loading was of 13.26% (PLGA-gentamicin) and 7.28% (PLGA-HA-Gentamicin). We have also tracked the release profile of gentamicin included in the material, finding that the antibiotic release was improved by encapsulating it in delivery systems, contributing to sustained release for a long period of time (about 30 days). The biomaterials had antibacterial action on all tested microbial strains except on Pseudomonas aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. S. Xiaoyu, X. Chun, W. Gang, et al., Polymers, 9, 189 – 207 (2017). doi:https://doi.org/10.3390/polym9060189.

    Article  CAS  Google Scholar 

  2. K. Sujit, S. Debnath, A. Saisivam, and O. Wahab, J. Pharmaceut. Biomed., 145, 854 – 859 (2017). https://doi.org/10.1016/j.jpba.

    Article  Google Scholar 

  3. Y. Mo and L. Y. Lim, J. Control. Release, 108, 244 – 262 (2005). doi:https://doi.org/10.1016/j.jconrel.2005.08.013.

    Article  CAS  PubMed  Google Scholar 

  4. H. Gu, C. Song, D. Long, et al., Polym. Int., 56, 1272 – 1280 (2007). doi:https://doi.org/10.1002/pi.2272.

    Article  CAS  Google Scholar 

  5. J. Neamþu, M. V. Bubulicã, A. Rotaru, et al., J. Therm. Anal. Calorim., 127, 1567 – 1582 (2017). doi:https://doi.org/10.1007/s10973-016-5905-9.

    Article  CAS  Google Scholar 

  6. M. V. Ciocîlteu, A. G. Mocanu, A. Mocanu, et al., Acta Pharm., 68, 129 – 144 (2018). doi:https://doi.org/10.2478/acph-2018-0011.

  7. A. G. Mocanu, A. Turcu-Þtiolicã, I. Belu, et al., Rev. Chim., 69, 1132 – 1138 (2018).

    Article  Google Scholar 

  8. M. V. Ciocîlteu, P. Podgoreanu, C. Delcaru, et al., Farmacia, 67, 580 – 586 (2019). doi:https://doi.org/10.31925/farmacia.2019.4.4.

    Article  CAS  Google Scholar 

  9. T. J. Levingstone, S. Herbaj, and N. J. Dunne, Nanomaterials, 9, 1570 – 1591 (2019). doi:https://doi.org/10.3390/nano9111570.

    Article  CAS  PubMed Central  Google Scholar 

  10. J. M. Fritz and J. R. McDonald, Phys. Sportsmed., 36, 50 – 54 (2008). doi:https://doi.org/10.3810/psm.2008.12.11.

    Article  Google Scholar 

  11. A. Gyselynck, A. Forrey, and R. Cutler, J. Infect. Dis., 124, 70 – 76 (1971). doi:https://doi.org/10.1093/infdis/124.supplement1.s70.

    Article  Google Scholar 

  12. A. Turcu-Þtiolicã, M. V. Bubulicã, O. E. Nicolaescu, et al., Rev. Chim., 69, 1944 – 1948 (2018).

    Article  Google Scholar 

  13. O. Ionescu, M. V. Ciocîlteu, C. V. Manda, et al., Mater. Plast., 56, 534 – 537 (2019).

    Article  Google Scholar 

  14. H. Nojehdehian, M. Ekrami, M. Shahriari, et al., Biomed. Res., 27, 70 – 78 (2016).

    CAS  Google Scholar 

  15. E. M. Hetrick and M. H. Schoenfisch, Chem. Soc. Rev., 35, 780–789 (2006). doi:https://doi.org/10.1039/b515219b.

    Article  CAS  PubMed  Google Scholar 

  16. S. B. Goodman, Z. Yao, M. Keeney, and F. Yang, Biomaterials, 34, 3174 – 3183 (2013). doi:https://doi.org/10.1016/j.biomaterials.2013.01.074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. I. G. Kang, C. I. Park, H. Lee, et al., Materials, 11, 258 – 271 (2018). doi:https://doi.org/10.3390/ma11020258.

    Article  CAS  PubMed Central  Google Scholar 

  18. C. Wischke and S. P. Schwendeman, Int. J. Pharm., 364, 298 – 327 (2008). doi:https://doi.org/10.1016/j.ijpharm.2008.04.042.

    Article  CAS  PubMed  Google Scholar 

  19. F. A. Muller, L. Muller, I. Hofmann, et al., Biomaterials, 27, 3955 – 3963 (2006). doi:https://doi.org/10.1016/j.biomaterials.2006.02.031.

    Article  CAS  PubMed  Google Scholar 

  20. D. Lickorish, J. A. Ramshaw, J. A. Werkmeister, et al., J. Biomed. Mater. Res. A, 68, 19 – 27 (2004). doi:https://doi.org/10.1002/jbm.a.20031.

    Article  CAS  PubMed  Google Scholar 

  21. X. M. Liu, Y. Zhang, F. Chen, et al., Pharm. Res., 29, 3169 – 3179 (2012). doi:https://doi.org/10.1007/s11095-012-0812-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. Makarov, V. Cohen, A. Raz-Pasteur, and I. Gotman, Eur. J. Pharm. Sci., 62, 49 – 56 (2014). doi:https://doi.org/10.1016/j.ejps.2014.05.008.

    Article  CAS  PubMed  Google Scholar 

  23. D. P. Lew and F. A. Waldvogel, Lancet, 364, 369 – 379 (2004). doi:https://doi.org/10.1016/S0140-6736(04)16727-5.

    Article  CAS  PubMed  Google Scholar 

  24. E. García del Pozo, J. Collazos, J. A. Cartón, et al., Rev. Esp. Quimioter., 31, 217 – 225 (2018).

    PubMed  Google Scholar 

  25. Z. Q. He and L. Z. Xiong, J. Macromol. Sci. B, 49, 66 – 74 (2010). doi:https://doi.org/10.1080/00222340903343731.

    Article  CAS  Google Scholar 

  26. F. Ramazani, W. Chen, C. F. van Nostrum, et al., Int. J. Pharm., 499, 358 – 367 (2016). doi:https://doi.org/10.1016/j.ijpharm.2016.01.020.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Yeo and K. Park, Arch. Pharm. Res., 27, 1 – 12 (2004). doi:https://doi.org/10.1007/BF02980037.

    Article  CAS  PubMed  Google Scholar 

  28. M. C. Chuong, J. Chin, J. W. Han, et al., Int. J. Pharmaceut. Anal., 4, 25 – 29 (2013).

    Google Scholar 

  29. M. Lungu, V. Tsakiris, and E. Enescu, Acta Phys. Pol. A, 125, 327 – 330 (2014). doi:https://doi.org/10.12693/APhysPolA.125.327.

    Article  Google Scholar 

  30. M. Kaszuba, D. McKnight, M. T. Connah, and F. K. McNeil-Watson, J. Nanopart. Res., 10, 823 – 829 (2008). doi:https://doi.org/10.1007/s11051-007-9317-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ciocîlteu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turcu-Ştiolică, A., Ciocîlteu, M.V., Podgoreanu, P. et al. PLGA-Gentamicin and PLGA-Hydroxyapatite-Gentamicin Microspheres for Medical Applications. Pharm Chem J 56, 645–653 (2022). https://doi.org/10.1007/s11094-022-02689-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02689-w

Keywords

Navigation