Skip to main content
Log in

(–)-cleistenolide and its Analogs as New Potential Antitumor Compounds Against PC-3 Cells

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In order to find and develop new active compounds against prostate cancer, (–)-cleistenolide (1) and its 24 new analogs were evaluated for in vitro cytotoxic activity against PC-3 cell line and normal cell line (MRC-5). All tested compounds were in silico examined in order to predict their physicochemical properties, drug ability and ADME-Tox characteristics. Furthermore, the predictive 3D-QSAR model was constructed using Comparative Molecular Field Analysis method. The obtained results revealed that most potent antiproliferative activity against PC-3 cells had 4-methoxy cinnamate 12 (IC50 = 0.11 μM). This compound showed approximately 260-fold stronger antiproliferative activity than lead 1, but at the same time it demonstrated over 40-fold greater potency compared to the commercial antitumor agent cisplatin. The presence of an electron-donating group at the C-4' position in the 4,6-di-O-acetyl derivative 12, significantly increases its activity compared to both non-substituted analogs. Evaluation of structural features through predictive 3D-QSAR modelling identified steric field features at the aromatic ring of cinnamoyl group, as well as around the OAc group at the C-4 position. In silico ADME-Tox analysis suggests that most of the analyzed compounds, including the most potent one, have desirable ADME-Tox properties for drug candidates and high potential in drug development, which recommend them for further research in the treatment of prostate cancer. Furthermore, the obtained 3D-QSAR model is able to successfully identify (–)-cleistenolide analogs that have significant cytotoxic activity against PC-3 cell line and provide information essential for screening and designing new analogs capable of inhibiting the growth of prostate cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. J. Ferlay, M. Ervik, F. Lam, et al., International Agency for Research on Cancer, Lyon, (2021).

  2. J. M. P. Ferreira de Oliveira, C. Santos, and E. Fernandes, Phytomedicine, 73, 152887 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. S. Samwel, S. J. M. Mdachi, M. H. H. Nkunya, et al., Nat. Prod. Commun., 2, 1934578X0700200706, (2007).

  4. F. Pereira, A. M. Madureira, S. Sancha, et al., Ethnopharmacology, 178, 180 – 187, (2016).

    Article  CAS  PubMed  Google Scholar 

  5. G. Benedekovia, M. Popsavin, N. S. Radulovia, et al., Bioorg. Chem., 106, 104491, (2021).

    Article  Google Scholar 

  6. R. Yang, H. Liu, C. Bai, et al., Pharmacol Res., 157, 104820 – 104820, (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. U. Abdulfatai, A. Uzairu, and S. Uba, J. Adv. Res., 8, 33 – 43 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. F. A. Olotu, C. Agoni, O. Soremekun, and M. E. S. Soliman, Expert Opin. Drug Discov., 15, 1095 – 1110 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. A. Bahuguna, P. V. Bharatam, and D. S. Rawat, J. Biochem. Mol. Toxicol., 35, e22675 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Fang, Y. Lu, X. Zang, et al., Sci. Rep., 6, 23634 – 23634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E. Pontiki, A. Peperidou, I. Fotopoulos, and D. Hadjipavlou-Litina, Curr. Pharm. Biotechnol., 19, 1019 – 1048 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. W. Jaidee, R. J. Andersen, B. O. Patrick, et al., Phytochemistry, 157, 8 – 20 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. G. Benedekovia, I. Kovaeevia, M. Popsavin, et al., Bioorg. Med. Chem. Lett., 26, 3318 – 3321 (2016).

    Article  Google Scholar 

  14. G. Benedekovia, M. Popsavin, I. Kovaeevia, et al., Eur. J. Med. Chem., 202, 112597 (2020).

    Article  Google Scholar 

  15. D. A. Scudiero, R. H. Shoemaker, K. D. Paull, et al., Cancer. Res., 48, 4827 – 4833 (1988).

    CAS  PubMed  Google Scholar 

  16. S. Dasari and P. B. Tchounwou, Eur. J. Pharmacol., 740, 364 – 378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. G. Madhavi Sastry, M. Adzhigirey, T. Day, et al., J. Comput. Aided Mol. Des., 27, 221 – 234 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. R. D. Cramer, D. E. Patterson, and J. D. Bunce, J. Am. Chem. Soc., 110, 5959 – 5967 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. G. Klebe, U. Abraham, and T. Mietzner, J. Med. Chem., 37, 4130 – 4146 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. G. Klebe and U. Abraham, J. Comput. Aided Mol. Des., 13, 1 – 10 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. I. V. Tetko, V. Y. Tanchuk, and A. E. P. Villa, J. Chem. Inf. Comput. Sci., 41, 1407 – 1421 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. A. Daina, O. Michielin, and V. Zoete, Sci. Rep., 7, 42 – 71 (2017).

    Article  Google Scholar 

  23. P. Ertl, B. Rohde, and P. Selzer, J. Med. Chem., 43, 3714 – 3717 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. A. Daina and V. Zoete, Chem. MedChem., 11, 1117 – 1121 (2016).

    CAS  Google Scholar 

  25. M. Rashidi, A. Seghatoleslam, M. Namavari, et al., Int. J. Cancer Manag., 10, e8633 (2017).

    Article  Google Scholar 

  26. V. Srivastava, A. Kumar, B. N. Mishra, and M. I. Siddiqi, Bioinformation, 2, 384 – 391, (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. C. Hansch, A. Leo, S. B. Mekapati, and A. Kurup, Bioorg. Med. Chem., 12, 3391 – 3400 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. V. R. Vukic, D. M. Loncar, D. V. Vukic, et al., Comput. Biol. Chem., 83, 107 – 112 (2019).

    Article  Google Scholar 

  29. Y. Wang, J. Xing, Y. Xu, et al., Rev. Biophys., 48, 488 – 515, (2015).

    Article  Google Scholar 

  30. H. Pajouhesh and G. R. Lenz, NeuroRx, 2, 541 – 553 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Y. C. Martin, J. Med. Chem., 48, 3164 – 3170 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. M. R. F. Pratama, H. Poerwono, S. Siswodiharjo, J. Basic Clin. Physiol. Pharmacol., 30 (2019).

  33. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Adv. Drug Del. Rev., 46, 3 – 26 (2001).

    Article  CAS  Google Scholar 

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Funding

This work was supported by research grants from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contracts No. 451-03-68/2020-14/200125 and 451-03-9/2021-14/200134). This work has also received funding from the Serbian Academy of Sciences and Arts under Strategic projects programme (Grant agreement No. 01-2019-F65), as well as by a research project from the same institution (Grant No. F-130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir R. Vukic.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vukic, V.R., Vukic, D.V., Benedekovic, G. et al. (–)-cleistenolide and its Analogs as New Potential Antitumor Compounds Against PC-3 Cells. Pharm Chem J 56, 619–626 (2022). https://doi.org/10.1007/s11094-022-02686-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02686-z

Keywords

Navigation