Skip to main content

Advertisement

Log in

Design, Synthesis and Antifungal Activity of Phloroglucinol Derivatives

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Phloroglucinols of Dryopteris fragrans (L.) Schott plant show strong antifungal activity. In previous work, we isolated a wide range of phloroglucinols from the plant and found that pseudoaspidinol of D. fragrans and its structural modifications (methylphloroglucinol derivatives) showed stronger antifungal activity and confirmed that the butyryl group of these compounds accounted for this activity. In this study, we designed a series of phloroglucinol derivatives (A1–A9) and methylphloroglucinol derivatives (B1–B9) by introducing acyl groups with diverse carbon numbers in the C-2 position, synthesized these compounds, and evaluated the anti-dermatophyte activity of compounds A1–A5 and B1–B5 on Trichophyton rubrum and Trichophyton mentagrophytes fungal species. The results showed that compound A5 exhibited the strongest activity. These compounds can be used as leads for the development of new antifungal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. M. Ruhnke, V. Rickerts, O. A. Cornely, et al., Mycoses, 54, 279 – 310 (2011).

    Article  CAS  Google Scholar 

  2. L. E. Cowen, D. Sanglard, S. J. Howard, et al., Cold Spring Harbor Perspect. Med., 5, a019752 (2014).

    Article  Google Scholar 

  3. L. Alcazar-Fuoli and E. Mellado, Br. J. Haematol., 166, 471 – 84 (2014).

    Article  Google Scholar 

  4. N. M. Revie, K. R. Iyer, N. R. Robbins, et al., Curr. Opin. Microbiol., 45, 70 – 76 (2018).

    Article  CAS  Google Scholar 

  5. H. Su, L. Han, and X. Huang, J Antibiot, 71, 978 – 91 (2018).

    Article  CAS  Google Scholar 

  6. D. G. Sant, S. G. Tupe, C. V. Ramana, et al., J. Appl. Microbiol., 121, 1498 – 1510 (2016).

    Article  CAS  Google Scholar 

  7. A. M. Fuentefria, B. Pippi, D. F. Dalla Lana, et al., Lett. Appl. Microbiol., 66, 2 – 13 (2018).

    Article  CAS  Google Scholar 

  8. D. S. Perlin, R. Rautemaa-Richardson, and A. Alastruey-Izquierdo, Lancet Infect. Dis., 17, e383 - e92 (2017).

    Article  Google Scholar 

  9. S. K. Shrestha, A. Garzan, and S. Garneau-Tsodikova, Eur. J. Med. Chem., 133, 309 – 18 (2017).

    Article  CAS  Google Scholar 

  10. M. Z. Zhang, C. Y. Jia, Y. C. Gu, et al., Eur. J. Med. Chem., 126, 669 – 74 (2017).

    Article  CAS  Google Scholar 

  11. Y. H. Huang, W. M. Zeng, G. Y. Li, et al., Molecules, 19, 507 – 13 (2014).

    Article  Google Scholar 

  12. X. Liu, J. Liu, T. Jiang, et al., J. Ethnopharmacol., 226, 36 – 43 (2018).

    Article  CAS  Google Scholar 

  13. H. Kuang, C. Sun, Y. Zhang, et al., Fitoterapia, 80, 134 – 137 (2009).

    Article  CAS  Google Scholar 

  14. S. Emami, S. Shojapour, M. A. Faramarzi, et al., Eur. J. Med. Chem., 66, 480 – 488 (2013).

    Article  CAS  Google Scholar 

  15. V. B. Urlacher and M. Girhard, Trends Biotechnol., 37, 882 – 897 (2019).

    Article  CAS  Google Scholar 

  16. H. Q. Fan, Z. B. Shen, Y. F. Chen, et al., J. Chin. Med. Mater., 35, 1981 – 1985 (2012).

    CAS  Google Scholar 

  17. Y. Sun, F. Mu, C. Li, et al., Chem.-Biol. Interact., 204, 88 – 97 (2013).

    Article  CAS  Google Scholar 

  18. N. Li, C. Gao, X. Peng, et al., Res. Microbiol., 165, 263 – 72 (2014).

    Article  CAS  Google Scholar 

  19. Y. Xu, G. R. Pang, D. Q. Chin. J. Ophthalmol., 46, 38 – 42 (2010).

    CAS  Google Scholar 

  20. O. Simonetti, C. Silvestri, D. Arzeni, et al., Mycoses, 57, 233 – 239 (2014).

    Article  CAS  Google Scholar 

  21. J. M. Muhlbacher. Clin Dermatol, 9(4), 479 – 485 (1991).

    Article  CAS  Google Scholar 

  22. X. J. Li, Y. J. Fu, M. Luo, et al., J. Pharm. Biomed. Anal., 61, 199 – 206 (2012).

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflicts of interest.

Funding

The work was supported by Special Innovation Project of Guangdong Education Department (Natural Science) (2017KTSCX107, 2020KZDZX1131), Science and Technology Planning Project of Guangdong Province (2014A020212602, 2017ZC0199), National Innovation and Entrepreneurship Training Program for College Students (201910573010), Medical Scientific Research Foundation of Guangdong Province (B2019004), and the Innovation and Strengthening Project of Guangdong Pharmaceutical University ‘Guangdong Province Graduate Education Innovation Program in 2020’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianbao Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Lai, W., Li, J. et al. Design, Synthesis and Antifungal Activity of Phloroglucinol Derivatives. Pharm Chem J 56, 356–360 (2022). https://doi.org/10.1007/s11094-022-02651-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02651-w

Keywords

Navigation