Skip to main content
Log in

Allyl Functionalized Benzimidazolium-Derived Ag(I)-N-Heterocyclic Carbene Complexes: Anti-Biofilm and Antimicrobial Properties

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Microorganisms in the biofilm structure cause severe health problems and economic losses. Therefore, it is very important to design and screen anti-biofilm molecules that can solve the related problems. This paper is aimed to demonstrate the antimicrobial and anti-biofilm properties of allyl substituted benzimidazolium-based Ag(I)-containing N-heterocyclic carbene (NHC) complexes. In this work, the antimicrobial and anti-biofilm properties of six allyl-substituted benzimidazolium-based Ag(I)-NHC complexes, the synthesis and characterization of which had been carried out previously, were investigated. The antibacterial properties of Ag(I)-NHC complexes were tested by the broth microdilution method. The biofilm formation was detected by microtiter plate assay. All test compounds (1–6) showed strong and same activity against Escherichia coli ATCC 25922 at concentrations of ≤3.9 μg/mL as compared to that of the reference anti-biotics (ampicillin). Test compounds exhibited the same or stronger activity than the reference drug against the Acinetobacter baumannii isolate with MedIC values of 15.6 – 31.25 μg/mL in comparison to the positive control colistin. All compounds inhibited the formation of E. coli biofilms at sub-MIC concentrations by 56 – 90%. Furthermore, it was found that these compounds reduced Klebsiella pneumoniae biofilm formation by 29 – 65%, S. aureus biofilm formation by 36 – 52%, E. faecalis biofilm formation by 38 – 50%, A. baumannii biofilm formation by 51 – 60%, and Candida albicans biofilm formation by 38 – 53%. Regarding the biofilms formed, it was established that the test compounds eradicated the mature of E. coli biofilm by 43 – 63%, K. pneumoniae biofilm by 16 – 40%, S. aureus biofilm by 18 – 39%, E. faecalis biofilm by 15 – 27%, A. baumannii biofilm by 27 – 53%, and C. albicans biofilm by 18 – 41%. Compounds evaluated in our work, which is one of the few studies on benzimidazolium-derived NHCs, have the potential to become new biological agents with strong antimicrobial properties and activity against microbial biofilms. Therefore, further in vivo and in vitro studies should be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. C. Dumitru, Rev. Rom. Med. Vet., 28, 35 – 40 (2018).

    Google Scholar 

  2. H. C. Flemming, J. Wingender, U. Szewzyk, et al., Nat. Rev. Microbiol., 14, 563 – 575 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. M. Alsan and M. Klompas, J. Clin. Outcomes Manag., 17, 363 – 369 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. R. Roy, M. Tiwari, G. Donelli, and V. Tiwari, Virulence, 9, 522 – 554 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. İ. Özdemir, O. Çiftçi, E. Evren, et al., Inorg. Chim. Acta, 506, 119530 (2020).

    Article  Google Scholar 

  6. E. Üstün, M. S. Çelebi, M. Ç. Ayvaz, and N. Şahin, Z. Naturforsch. C., 76, 219 – 227 (2021).

    Article  PubMed  Google Scholar 

  7. S. D. Düşünceli, D. Ayaz, E. Üstün, et al., J. Coord. Chem., 73(13), 1967 – 1986 (2020).

    Article  Google Scholar 

  8. T. Bernardi, S. Badel, P. Mayer, et al., ChemMedChem, 9, 1140 – 1144 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. H. Jacobsen, A. Correa, A. Poater, et al., Coord. Chem. Rev., 253, 687 – 703 (2009).

    Article  CAS  Google Scholar 

  10. R. A. Haque, M. A. Iqbal, F. Mohamad, and M. R. Razali, J. Mol. Struct. 1155, 362 – 370 (2018).

    Article  CAS  Google Scholar 

  11. S. Patil, J. Claffey, A. Deally, et al., Eur. J. Inorg. Chem., 2010(7), 1020 – 1031 (2010).

    Article  Google Scholar 

  12. A. Kascatan-Nebioglu, M. J. Panzner, C. A. Tessier, et al., Coord. Chem. Rev., 251(5–6), 884 – 895 (2007).

    Article  CAS  Google Scholar 

  13. M. J. Panzner, A. Deeraksa, A. Smith, et al., Eur. J. Inorg. Chem., 2009(13), 1739 – 1745 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. G. Roymahapatra, S. M. Mandal, F. W. Porto, et al., Curr. Med. Chem., 19(24), 4184 – 4193 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. E. Çevik-Yıldız, N. Şahin and S. Şahin-Bölükbaşı, J. Mol. Struct, 1199, 126987 (2020).

    Article  Google Scholar 

  16. S. Şahin-Bölükbaşı, N. Şahin, M. N. Tahir, et al., Inorg. Chim. Acta, 486, 711 – 718 (2019).

    Article  Google Scholar 

  17. N. Şahin, S. Şahin-Bölükbaşı,M. N. Tahir, et al., J. Mol. Struct., 1179, 92 – 99 (2019).

    Article  Google Scholar 

  18. E. Üstün and N. Şahin, J. Indian Chem. Soc., 97, 1 – 5 (2020).

    Google Scholar 

  19. H. Gezegen, C. Hepokur, U. Tutar, and M. Ceylan, Chem. Biodivers., 14, e1700223 (2017).

    Article  Google Scholar 

  20. U. Tutar, Fresenius Environ. Bull., 27, 3713 – 3720 (2018).

    CAS  Google Scholar 

  21. U. Tutar, C. Celik, İ. Karaman, et al., Trop. J. Pharm. Res., 15,1039 – 1046 (2016).

    Article  CAS  Google Scholar 

  22. N. B. Hallam, J. R. West, C. F. Forster, and J. Simms, Water Res., 35, 4063 – 4071(2001).

    Article  CAS  PubMed  Google Scholar 

  23. J. L. Del Pozo, Expert. Rev. Anti. Infect. Ther., 16, 51 – 65 (2018).

    Article  PubMed  Google Scholar 

  24. G. D. Wright, Nat. Prod. Rep., 34, 694 – 701 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. C. H. Chen and T. K. Lu, Antibiotics (Basel), 9, 24 (2020).

    Article  CAS  Google Scholar 

  26. S. Nayak and S. L. Gaonkar, ChemMedChem, 16, 1 – 32 (2021).

    Article  Google Scholar 

  27. A. G. B. Dileepan, A. Ganesh Kumar, R. Mathumidha, et al., Chem. Pap., 72, 3017 – 3031 (2018).

    Article  CAS  Google Scholar 

  28. G. Achar, P. P. Hokrani, K. N. Brinda, et al., J. Mol. Struct., 1196, 627 – 636 (2019).

    Article  CAS  Google Scholar 

  29. C. R. Shahini, G. Achar, S. Budagumpi, et al., J. Organomet. Chem., 868, 1 – 13 (2018).

    Article  CAS  Google Scholar 

  30. İ. Özdemir, S. Demir, S. Günal, et al., Inorg. Chim. Acta, 363, 3803 – 3808 (2010).

    Article  Google Scholar 

  31. Y. Gök, S. Akkoç, H. Erdoğan, and S. Albayrak, J. Enzyme Inhib. Med. Chem., 31, 1322 – 1327 (2016).

    Article  PubMed  Google Scholar 

  32. N. Kaloğlu, M. Kaloğlu, İ. Özdemir, et al., J. Chin. Chem. Soc., 64, 420–426 (2017).

    Article  Google Scholar 

  33. C. R. Elie, G. David and A. R. Schmitzer, J. Med. Chem., 58, 2358 – 2366 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. T. Samanta, G. Roymahapatra, W. F. Porto, et al., PLoS One, 8, e58346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Tessier and A. R. Schmitzer, RSC Adv. 10, 9420 – 9430 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Sivas Cumhuriyet University, Faculty of Medicine (CUTFAM) Research Center for technical support.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Tutar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutar, U., Çelik, C. & Şahin, N. Allyl Functionalized Benzimidazolium-Derived Ag(I)-N-Heterocyclic Carbene Complexes: Anti-Biofilm and Antimicrobial Properties. Pharm Chem J 56, 54–60 (2022). https://doi.org/10.1007/s11094-022-02601-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02601-6

Keywords

Navigation