Skip to main content
Log in

Doxorubicin Release from Bovine Serum Albumin Microparticles

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Doxorubicin (Dox) is an anthracycline antibiotic and highly potent anticancer drug. However, its utility is often limited by severe side effects such as irreversible cardiotoxicity and reversible nephrotoxicity. In recent years, biopolymeric carriers have been used to overcome the disadvantages of conventional drug delivery systems. In this work, bovine serum albumin (BSA) microparticles were prepared and studied as natural biopolymeric carrier for anticancer agent release. The resulting microparticles were examined for entrapment efficiency and in vitro drug release profile. The entrapment efficiency of prepared BSA microparticles was 75%. Dox loaded BSA microparticles showed good in vitro release profile with the initial burst followed by slower and controlled release of the drug up to 96 h (4 days). The microparticles were evaluated against human liver cancer A549 cells (non-small-cell lung cancer cell line) and HeLa cells (cervical cancer cell line) by MTT reduction assay. The results showed that unloaded microparticles produced very low cytotoxic effects on both cancer cells at all incubation times. Drug loaded microparticles showed lower cell viability of HeLa cells in comparison with A549 cells. It is believed that the obtained results will contribute to the development of new drug delivery systems for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. G. R. Dagenais, D. P. Leong, and S. Rangarajan, Lancet, 395, 785 – 794 (2020).

    Article  PubMed  Google Scholar 

  2. H.Wang, M. Naghavi, C. Allen, et al., Lancet, 388, 1459 – 1544 (2016).

    Article  Google Scholar 

  3. E. Barbounaki-Konstantakou, Chemotherapy, Beta Medical Arts, Athens (1989).

    Google Scholar 

  4. A. Kumar, J. White, R. J. Christie, et al., Annu. Rep. Med. Chem., 50, 441 – 480 (2017).

    CAS  Google Scholar 

  5. K. Y. Yoneda and C. E. Cross, Compr. Toxicol., 8, 477 – 510 (2010).

    Article  Google Scholar 

  6. K. Chatterjee, J. Zhang, N. Honbo, et al., Cardiology, 115, 155 – 162 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Octavia, C. G. Tocchetti, and K. L. Gabrielson, J. Mol. Cell. Cardiol., 52(6), 1213 – 1225 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. S. Reddy, K. V. M. Krishna, and S. Srikanth, Int. J. Res. Pharm. Chem., 3(4), 763 – 767 (2013).

    Google Scholar 

  9. M. R. Venkatesan and K. Valliapan, J. Pharm. Sci. Res., 1(4), 26 – 35 (2009).

    CAS  Google Scholar 

  10. M. Nagpal, K. Midha, and S. Arora, Int. J. Recent Sci. Res., 5(3), 543 – 566 (2015).

    Google Scholar 

  11. N. K. Jain, Controlled and Novel Drug Delivery, CBS Publishers, New Delhi (2004).

    Google Scholar 

  12. R. Jadia, C. Scandore, and P. Rai, Int. J. Nanotech. and Nanomed., 1(1), 1 – 27 (2016).

    Google Scholar 

  13. R. Mo, T. Jiang, and Z. Gu, Nanomedicine, 9, 1117 – 1120 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Dong, A. A. Eltoukhy, C. A. Alabi, et al., Adv. Healthcare Mater., 3, 1392 – 1397 (2014).

    Article  CAS  Google Scholar 

  15. W. T. Al-Jamal and K. Kostarelos, Acc. Chem. Res., 44(10), 1094 – 1104 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. A. Jesorka and O. Orwar, Annu. Rev. Anal. Chem., 1(1), 801 – 832 (2008).

    Article  CAS  Google Scholar 

  17. X. G. Frank, R. Karnik, A. Z. Wang, et al., Nano Today, 2, 14 – 21 (2007).

    Google Scholar 

  18. H. Shih and C. Lin, Biomacromolecules, 16, 1915 – 1923 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Li, D. Maciel, J. Rodrigues, et al., Chem. Rev., 115, 8564 – 8608 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. A. S. Hoffman, Adv. Drug Delivery Rev., 54(1), 3 – 12 (2002).

    Article  CAS  Google Scholar 

  21. J. Cabral and C. C. Moratti, Future Med. Chem., 3, 1877 – 1888 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. N. A. Peppas, Y. Huang, M. Torres-Lugo, et al., Annu. Rev. Biomed. Eng., 2, 9 – 29 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, et al., J. Control. Rel.,70, 1 – 20 (2001).

    Article  CAS  Google Scholar 

  24. J. Su, F. Chen, V. L. Cryns, et al., J. Am. Chem. Soc., 133, 11850 – 11853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Kumar, S. Singh, S. Senapati, et al., Int. J. Bio. Mac., 104, 487 – 497 (2017).

    Article  CAS  Google Scholar 

  26. M. S. Shim and Y. J. Kwon, Adv. Drug Delivery Rev., 64, 1046 – 1059 (2012).

    Article  CAS  Google Scholar 

  27. W. Jiang, R. K. Gupta, M. C. Deshpande, et al., Adv. Drug Delivery Rev., 57(3), 391 – 410 (2005).

    Article  CAS  Google Scholar 

  28. E. Mathiowitz, J. S. Jacob and Y. S. Jong, Nature, 386(6623), 410 – 414 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. A. K. Iyer, G. Khaled, J. Fang, et al., Drug Discovery Today, 11, 812 – 818 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. L. S. Jabr-Milane, L. E. van Vlerken, S. Yadav, et al., Cancer Treat. Rev., 34, 592 – 602 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. N. Cao and S. S. Feng, Biomaterials, 29, 3856 – 3865 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. L. P. Peppas, Int. J. Pharm., 116, 1 – 9 (1995).

    Article  Google Scholar 

  33. I. Brigger, C. Dubernet, and P. Couvreur, Adv. Drug Delivery Rev., 54, 631 – 651 (2002).

    Article  CAS  Google Scholar 

  34. L. Yu, K. Dean and L. Li, Prog. Polym. Sci., 31, 576 – 602 (2006).

    Article  CAS  Google Scholar 

  35. J. K. Oh, D. I. Lee, and J. M. Park, Prog. Polym. Sci., 34, 1261 – 1282 (2009).

    Article  CAS  Google Scholar 

  36. L. Uebersax, H. P. Merkle, and L. Meinel, Tissue Eng., Part B, 15, 263 – 289 (2009).

    Article  CAS  Google Scholar 

  37. D. Yardley, J. Control. Rel., 170, 365 – 372 (2013).

    Article  CAS  Google Scholar 

  38. L. Mocan, C. Matea, F. A. Tabaran, et al., Int. J. Nanomed., 10, 5435 – 5445 (2015).

    CAS  Google Scholar 

  39. X. Y. Yu, Y. Yang, X. Zou, et al., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 94(8), 23 – 29 (2012).

    Article  CAS  Google Scholar 

  40. A. Gülsu, H. Ayhan, and F. Ayhan, Turk. J. Biochem., 37(2), 120 – 128 (2012).

    Article  Google Scholar 

  41. J. Bellare, R. Banerjee, and S. Das, Trends Biomater. Artif. Organs, 18, 203 – 211 (2005).

    Google Scholar 

  42. T. Mosmann, J. Immunol. Meth., 65, 55 – 63 (1983).

    Article  CAS  Google Scholar 

  43. J. Wang, Y. Li, X. Wang, et al., Micromachines (Basel), 8(1), 1 – 23 (2017).

    Google Scholar 

  44. D. Y. Arifin, L. Y. Lee, and C. H. Wang, Adv. Drug Delivery Rev., 58(12 – 13), 1274 – 1325 (2006).

  45. R. C. Dhakar, S. D. Maurya, S. Aggarawal, et al., Pharm. Globale (IJCP), 1(6), 1 – 5 (2010).

    Google Scholar 

  46. K. M. El-Say, Drug Des., Dev. Ther., 10, 825 – 839 (2016).

    Article  CAS  Google Scholar 

  47. P. Ganesan, A. J. D. Johnson, L. Sabapathy, et al., Am. J. Drug Discov. Dev., 4(3), 153 – 179 (2014).

    Article  Google Scholar 

  48. P. He, S. S. Davis, and L. Illum, Int. J. Pharm., 187, 53 – 65 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. S. K. Nitta and K. Numata, Int. J. Mol. Sci., 14(1), 1629 – 1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A. Muvaffak, I. Gurhan, U. Gunduz, et al., J. Drug Targeting, 13(3), 151 – 159 (2005).

    Article  CAS  Google Scholar 

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Funding

This work has been granted by the Muğla Sıtkı Koçman University Research Projects Coordination Office through Project Grant Number 18/045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydan Gülsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülsu, A., Aslanpay, M.C., Alper, M. et al. Doxorubicin Release from Bovine Serum Albumin Microparticles. Pharm Chem J 55, 1157–1162 (2022). https://doi.org/10.1007/s11094-022-02552-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02552-y

Keywords

Navigation