Skip to main content

Advertisement

Log in

Determination of Paclitaxel Solubility and Stability in the Presence of Injectable Excipients

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Due to poor aqueous solubility of paclitaxel, cremophor is one of the excipients used to improve solubility in Taxol while it is responsible for a number of adverse effects such as anaphylactic shock. This research was aimed to determine the solubility and stability of paclitaxel in the presence of intravenous injectable excipients. For this purpose, the solubility of paclitaxel was measured in PEG 400, ethanol, miglyol 812, octanoic acid and oleic acid using the shake flask method. Paclitaxel showed the highest solubility in PEG 400 because of possible hydrophobic interaction of the drug with polyethylene chains. The solubility of paclitaxel in ethanol was higher than its aqueous solubility, accentuating the importance of hydrogen bonding. The solubility of paclitaxel was slightly improved in octanoic acid, oleic acid and miglyol 812, presumably for less matching hydrophobic-hydrophilic balance of their molecules with paclitaxel. The stability of paclitaxel was examined in PEG 400, ethanol, and their binary mixture. Paclitaxel exhibited highest stability in the latter case. Probably, this is because of the matching polarity of PEG 400–ethanol mixture with paclitaxel. The effect of anhydrous citric acid on the stability of paclitaxel was also studied. Citric acid significantly improved the stability because it set pH of the prepared compositions in the range of 3 – 5, where paclitaxel exhibited the slowest rate of degradation. The prepared compositions were introduced in aqueous media in various concentrations to study precipitation due to dilution. Precipitation has been observed at all concentrations because paclitaxel is greatly insoluble in water and resists re-dissolving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Wall and M. C Wani, J. Ethnopharmacol., 51, 239 – 254 (1996).

    Article  CAS  Google Scholar 

  2. M. S. Surapaneni, S. K. Das, and N. G. Das, ISRN Pharmacol., (2012).

  3. A. O. Nornoo, D. W. Osborne, and D. L. Chow, Int. J. Pharm., 349, 108 – 116 (2008).

    Article  CAS  Google Scholar 

  4. C. M. Spencer and D. Faulds, Drugs, 48, 794 – 847 (1994).

    Article  CAS  Google Scholar 

  5. J. S. Kloover, M. A. den Bakker, H. Gelderblom, and J. P. van Meerbeeck, Brit. J. Cancer, 90, 304 – 305 (2004).

    Article  CAS  Google Scholar 

  6. A. K. Singla, A. Garg, and D. Aggarwal, Int. J. Pharm., 235, 179 – 192 (2002).

    Article  CAS  Google Scholar 

  7. J. A. Yared and K. Tkaczuk, Drug. Des. Devel. Ther., 6, 371 – 384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. J. T. Rubino and S. H. Yalkowsky, Pharm. Res., 4, 220 – 230 (1987).

    Article  CAS  Google Scholar 

  9. M. El-Mahrab-Robert, V. Rosilio, M-A. Bolzinger, et al., Int. J. Pharm., 348, 89 – 94 (2008).

  10. S. Reiner, G. Reineccius, and T. Peppard, J. Food. Sci., 75, 236 – 246 (2010).

    Article  Google Scholar 

  11. C. Wohlfahrt and M. D. Lechner, Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures: Supplement to Volume IV / 17, Springer, Berlin (2015), pp. 216 – 217.

  12. J. W. Millard, F. Alvarez-Nunez and S. H. Yalkowsky, Int. J. Pharm., 245, 153 – 166 (2002).

    Article  CAS  Google Scholar 

  13. Canadian Institutes of Health Research. Oleic Acid. drugbank.ca/drugs/DB04224 (Accessed August 15, 2020).

  14. Canadian Institutes of Health Research. Caprylic Acid. drugbank.ca/drugs/DB04519 (Accessed August 15, 2020).

  15. Canadian Institutes of Health Research. PEG 400. drugbank.ca/drugs/DB03556 (Accessed August 15, 2020).

  16. Canadian Institutes of Health Research. Ethanol. drugbank.ca/drugs/DB00898 (Accessed August 15, 2020).

  17. Y. Qiu, Y. Chen, G. G. Zhang, et al., Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, Academic Press, New York (2009), pp. 5, 15, 94.

  18. S. V. Balasubramanian, J. L. Alderfer, and R. M. Straubinger, J. Pharm. Sci., 83, 1470 – 1476 (1994).

    Article  CAS  Google Scholar 

  19. D. Mastropaolo, A. Camerman, Y. Luo, et al., PNAS, 92, 6920 – 6924 (1995).

    Article  CAS  Google Scholar 

  20. I. Nandi, M. Bateson, M. Bari, et al., AAPS Pharm. Sci. Tech., 4, 1 – 5 (2003).

    Article  Google Scholar 

  21. Y. S. Thorat, I. D. Gonjari, and A. H. Hosmani, Int. J. Pharm. Sci. Res., 10(2), 2501 (2011).

    Google Scholar 

  22. V. R. Vemula, V. Lagishetty, and S. Lingala, Int. J. Pharm. Sci. Rev. Res., 5, 41 – 51 (2010).

    CAS  Google Scholar 

  23. Y. C. Lee, P. D. Zocharski, and B. Samas, Int. J. Pharm., 253, 111 – 119 (2003).

    Article  CAS  Google Scholar 

  24. S. Kalepu and V. Nekkanti, Acta. Pharm. Sin. B., 5, 442 – 453 (2015).

    Article  Google Scholar 

  25. International Conference on Harmonization. Q1A (R2): Stability Testing of New Drug Substances and Products (Revision 2); ich.org/products/guidelines/quality/article/quality-guidelines (Accessed August 15, 2020).

  26. A. N. Martin, P. J. Sinko, and Y. Singh, Martin’s Physical Pharmacy and Pharmaceutical Sciences: Physical, Chemical and Piopharmaceutical Principles in the Pharmaceutical Sciences, Sixth edition, Lippincott Williams & Wilkins, Baltimore (2011), pp. 335 – 340.

  27. T. Y. Ma, D. Hollander, P. Krugliak, and K. Katz, Gastroenterology, 98, 39 – 46 (1990).

    Article  CAS  Google Scholar 

  28. E. Rytting, K. A. Lentz, X. Q. Chen, et al., Pharm. Res., 21, 237 – 244 (2004).

    Article  CAS  Google Scholar 

  29. J. Tian and V. J. Stella, J. Pharm. Sci., 97, 3100 – 3108 (2008).

    Article  CAS  Google Scholar 

  30. S. K. Dordunoo and H. M. Burt, Int. J. Pharm., 133, 191 – 201 (1996).

    Article  CAS  Google Scholar 

  31. H. Montaseri, F. Jamali, J. A. Rogers, et al., Iran J. Pharm. Res., 1, 43 – 51 (2005).

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Valizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi-Oroumiyeh, A., Valizadeh, H. & Zakeri-Milani, P. Determination of Paclitaxel Solubility and Stability in the Presence of Injectable Excipients. Pharm Chem J 55, 983–987 (2021). https://doi.org/10.1007/s11094-021-02526-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02526-6

Keywords

Navigation