Skip to main content

Advertisement

Log in

Synthesis, Antimalarial Activity Evaluation and Molecular Docking Studies of Some New Substituted Spiro-1,2,4,5-Tetraoxane Derivatives

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Eight new substituted spiro-1,2,4,5-tetraoxane derivatives were synthesized and characterized by a number of analytical and spectroscopic techniques. The molecules were subsequently screened for in vitro antimalarial activity against chloroquine sensitive (3D7) and chloroquine resistant (RKL-9) strains of Plasmodium falciparum. These substituted spiro-1,2,4,5-tetraoxane derivatives were studied by molecular docking analysis in the active site of Falcipain-2 as a putative protein. Most of the synthesized compounds exhibited moderate to very good activity toward the parasite in comparison to the standard drug, chloroquine. Three compounds showed potent antimalarial activity against chloroquine sensitive strain of P. falciparum (3D7). One compound 5b (3-ethyl-3-methyl-1,2,4,5-tetraoxa-spiro[5.5]undecane) showed a very good activity against both chloroquine sensitive strain (3D7) with MIC = 1.95 ± 0.06 μg/mL and IC50 = 1.95 ± 0.06 μg/mL compared to chloroquine (MIC = 0.4 ± 0.10 μg/mL, IC50 = 0.04 ± 0.01 μg/mL) as well as chloroquine-resistant strain of P. falciparum (RKL-9) with MIC = 15.63 ± 0.70 μg/mL and IC50 = 3.90 ± 0.09 μg/mL compared to chloroquine (MIC = 25.00 ± 0.20 μg/mL, IC50 = 0.39 ± 0.02 μg/mL). The top scored compounds having low binding energy interact with the active site of Falcipain-2 in molecular docking studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. WHO: World Malaria Report 2013, ISBN 978 92 4 156469 4. www.who.int [accessed on 19.06.2014].

  2. www.rbm.who.int [accessed on 05.02.2014].

  3. M. K. Kumawat, P. Parida, and D. Chetia, Med. Chem. Res., 25(9), 1993 – 2004 (2016).

    Article  CAS  Google Scholar 

  4. M. K. Kumawat and D. Chetia, Bangladesh J. Pharmacol., 10, 917 – 923 (2015).

    Article  Google Scholar 

  5. M. K. Kumawat, U. P. Singh, B. Singh, et al., Arab J. Chem., 9, S643 – S647 (2016).

    Article  CAS  Google Scholar 

  6. M. K. Kumawat, U. P. Singh, and D. Chetia, Pharm. Chem. J., 53(9), 822 – 830 (2019).

    Article  CAS  Google Scholar 

  7. P. M. O’Neill, G. L. Ellis, R. Amewu, et al., Bioorg. Med. Chem. Lett., 18, 1720–1724 (2008).

    Article  Google Scholar 

  8. P. M. O’Neill, G. L. Ellis, R. Amewu, et al., J. Med. Chem., 51(7), 2170–2177 (2008).

    Article  Google Scholar 

  9. D. A. Casteel, in: Burger’s Medicinal Chemistry and Drug Discovery, 5th ed., Wiley Interscience: New York (1997), Vol. 5, pp 3 – 75.

  10. N. Kumar, S. I. Khan, H. Atheaya, et al., Eur. J. Med. Chem., 46, 2816 – 2827 (2011).

    Article  CAS  Google Scholar 

  11. N. Kumar, S. I. Khan, Beena, et al., Bioorg Med Chem., 17, 5632 – 5638 (2009).

  12. N. Kumar, S. I. Khan, M. Sharma, et al., Bioorg Med Chem., 19, 1675 – 1677 (2009).

    Article  CAS  Google Scholar 

  13. P. M. O’Neill, R. K. Amewu, G. L. Nixon, et al., Angew. Chem. Int. Ed., 49, 5693 – 5697 (2010).

    Article  Google Scholar 

  14. J. Coates, in: Encyclopedia of Analytical Chemistry, R. A. Meyers (Ed.). John Wiley & Sons: Chichester (2000), pp. 10815 – 10837.

  15. D. W. Mathieson, Interpretation of Organic Spectra, Academic Press, New York (1965).

  16. D. J. Pasto, C. R. Johnson, M. J. Miller, Experiments and Techniques in Organic Chemistry, Prentice Hall: New Jersey (1992).

  17. R. M. Silverstein and F. X. Webster, Spectrometric Identification of Organic Compounds, John Wiley & Sons: New York (1963).

  18. A. O. Terent’ev, D. A. Borisov, and I. A. Yaremenko, Chem. Heterocycl. Compd., 48(1), 55 – 58 (2012).

    Article  Google Scholar 

  19. I. Opsenica, D. Opsenica, K. S. Smith, et al., J. Med. Chem., 51, 2261 – 2266 (2008).

    Article  CAS  Google Scholar 

  20. D. Opsenica, D. E. Kyle, W. K. Milhous, et al., J. Serb. Chem. Soc., 68(4–5), 291 – 302 (2003).

    Article  CAS  Google Scholar 

  21. K. K. Kamboj, Central Drug Research Institute, Lucknow (2006), pp. 184 – 198.

  22. W. Trager and J. B. Jensen, Science, 193, 673 – 675 (1976).

    Article  CAS  Google Scholar 

  23. R. Oliveira, A. S. Newton, R. C. Guedes, et al., Chem. Med. Chem., 8, 1528 – 1536 (2013).

    Article  CAS  Google Scholar 

  24. Y. Liu, W. Q. Lu, K. Q. Cui, et al., Arch. Pharm. Res., 35(9), 1525 – 1531 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. C. R. Pillai, Emeritus Scientist, and Dr. Anup Anvikar, Director, National Institute of Malaria Research (Indian Council of Medical Research, New Delhi) for providing antimalarial screening facilities and training. The authors also are thankful to S. A. I. F., Punjab University (Chandigarh, India) for providing spectroscopic data.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar Kumawat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumawat, M.K., Chetia, D. Synthesis, Antimalarial Activity Evaluation and Molecular Docking Studies of Some New Substituted Spiro-1,2,4,5-Tetraoxane Derivatives. Pharm Chem J 55, 814–820 (2021). https://doi.org/10.1007/s11094-021-02500-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02500-2

Keywords

Navigation