Skip to main content

Advertisement

Log in

Photogenerated Iodine for Determination of Active Pharmaceutical Ingredients in Tetralgin Drug

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A method for accelerated determination of active pharmaceutical ingredients (APIs) in Tetralgin combined preparation was developed based on preliminary extraction separation of the components followed by preparation of their aqueous extracts and voltammetric titration by a solution of photogenerated iodine obtained via irradiation of an auxiliary solution containing potassium iodide, a mixture of sensitizers (sodium eosinate:fluorescein:auramine, 1:1:1 mole ratio), and acetate buffer (pH 5.6). Extraction (CHCl3) separation of the drug components allowed extraction from a model solution of up to 97% caffeine (pH 11.0 – 12.0) and 98% phenobarbital (pH 4.0 – 5.0). The found contents of Tetralgin APIs were within the range recommended by GPM 1.4.2.0009.15 so that the quality of the drug met GMP standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. P. M. Clarke and A. V. Avery, Med. J., 200(9), 518 – 520 (2014); https://doi.org/10.5694/mja14.00199.

    Article  Google Scholar 

  2. W. Sun, P. Sanderson, and W. Zheng, Drug Discov. Today, 21(7), 1189 – 1195 (2016); https://doi.org/10.1016/j.drudis.2016.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T. Kabir, S. Uddin, A. A. Mamun, et al., Int. J. Mol. Sci., 21(9), 3272 (2020); https://doi.org/10.3390/ijms21093272.

    Article  CAS  PubMed Central  Google Scholar 

  4. S. Yu. Martsevich, Yu. V. Lukina, A. D. Deev, et al., Ratsion. Farmakoter. Kardiol., No. 3, 29 – 34 (2005).

  5. G. Schoretsanitis, E. Spina, C. Hiemke, and J. de Leon, Expert Rev. Clin. Pharmacol., 10(9), 965 – 981 (2017); https://doi.org/10.1080/17512433.2017.1345623.

    Article  CAS  PubMed  Google Scholar 

  6. C. K. S. Ong, P. Lirk, C. H. Tan, and R. A. Seymour, Clin. Med. Res., 5(1), 19 – 34 (2007); https://doi.org/10.3121/cmr.2007.698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. R. Siddiquia, Z. A. AlOthmana, and N. Rahman, Arabian J. Chem., 10, 1409 – 1421 (2017); https://doi.org/10.1016/j.arabjc.2013.04.016.

    Article  CAS  Google Scholar 

  8. S. Mennickent, M. de Diego, et al., in: Quality Control of Herbal Medicines and Related Areas, Y. Shoyama (ed.), InTech, Rijeka, Croatia (2011), Chap. 8, pp. 145 – 160; https://doi.org/10.5772/23475.

  9. M. G. El-Bardicy, M. F. El-Tanas, and E. S. El-Zanfally, Spectrosc. Lett., 30(2), 267 – 287 (1997); https://doi.org/10.1080/00387019708006987.

    Article  CAS  Google Scholar 

  10. 10. M.Wojciak-Kosior, A. Skalska, G. Matysik, and M. Kryska, J. AOAC Int., 89(4), 995 – 998 (2006); https://doi.org/10.1093/jaoac/89.4.995.

  11. Y. Hori, M. Fujisawa, K. Shimada, et al., Biol. Pharm. Bull., 29(1), 7 – 13 (2006); https://doi.org/10.1248/bpb.29.7.

    Article  CAS  PubMed  Google Scholar 

  12. G. Ragab, H. Saleh, M. El-Henawee, and O. F. Elsayed, Eurasian J. Anal. Chem., 11(4), 197 – 210 (2016).

    CAS  Google Scholar 

  13. O. L. Mezentseva, G. B. Slepchenko, V. D. Filimonov, et al., Anal. Kontrol, 22(2), 206 – 213 (2018); https://doi.org/10.15826/analitika.2018.22.2.011.

    Article  Google Scholar 

  14. S. Z. Yao, J. Pharm. Biomed. Anal., 5(4), 325 – 331 (1987); https://doi.org/10.1016/0731-7085(87)80038-9.

    Article  CAS  PubMed  Google Scholar 

  15. E. V. Turusova, O. E. Nasakin, et al., RU Pat. 122,490, Nov. 27, 2012.

  16. G. Loos, A. V. Schepdael, and D. Cabooter, Philos. Trans. R. Soc., A, 374, No. 2079, 20150366 (2016); https://doi.org/10.1098/rsta.2015.0366.

    Article  Google Scholar 

  17. B. R. Rader and E. S. Aranda, J. Pharm. Sci., 57(5), 847 – 851 (1968); https://doi.org/10.1002/jps.2600570528.

    Article  CAS  PubMed  Google Scholar 

  18. N. N. Azwanida, Med. Aromat. Plants, 4(3), 1000196 (2015); https://doi.org/10.4172/2167-0412.1000196.

    Article  Google Scholar 

  19. W. Feng, M. Li, Z. Hao, and J. Zhang, “Analytical methods of isolation and identification,” in: Phytochemicals in Human Health, V. Rao, D. Mans, and L. Rao (eds.), Intechopen, (2020); Chap. 3; https://doi.org/10.5772/intechopen.88122.

  20. A. Severina and V. Petrenko, SU Pat. 691,740, Oct. 15, 1979.

  21. J. N. Valenta, R. P. Dixon, A. D. Hamilton, and S. G Weber, Anal. Chem., 66(14), 2397 – 2403 (1994); https://doi.org/10.1021/ac00086a028.

    Article  CAS  PubMed  Google Scholar 

  22. D. N. Bailey and M. Kelner, J. Anal. Toxicol., 8(1), 26 – 28 (1984); https://doi.org/10.1093/jat/8.1.26.

    Article  CAS  PubMed  Google Scholar 

  23. A. I. Zhebentyaev, Vestn. Farm., No. 1, 50 – 55 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Turusova.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 55, No. 7, pp. 55 – 59, July, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turusova, E.V., Nasakin, O.E. Photogenerated Iodine for Determination of Active Pharmaceutical Ingredients in Tetralgin Drug. Pharm Chem J 55, 740–744 (2021). https://doi.org/10.1007/s11094-021-02486-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02486-x

Keywords

Navigation