Skip to main content
Log in

Ameliorative Effect of Polysaccharide Rich Fraction from Eulophia herbacea Against Methotrexate Induced Liver Damage in Rats

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The present study was aimed to investigate a protective effect of polysaccharide rich fraction from Eulophia herbacea Lindl. tubers against methotrexate (MTX) induced liver damage in rats. The polysaccharide-rich extract fraction of E. herbacea (PEEH) was isolated from tubers by maceration and then evaluated for its hepatoprotective effect on MTX induced liver damage in rats through measurement of the liver enzymes function and the levels of proinflammatory cytokines and antioxidants. A group of 30 Wistar albino rats were randomly selected and divided into five groups, each containing six rats. Normal control group received saline, negative control group received MTX (20 mg/kg, i.p.) at a single dose, and test groups received MTX (20 mg/kg, i.p.) followed by the PEEH fraction at 100 and 200 mg/kg (p.o.) for four days. Silymarin (100 mg/kg, p.o.) was used as standard for comparison. Biochemical analysis and histological examinations of liver were performed on the fifth day. The PEEH fraction contains 26.71 mg glucomannan per gram of tubers, as estimated by HPTLC method. Results of this study confirmed that PEEH treatment led to significantly reduced (P ≤ 0.01) level of liver enzymes (ALP, ALT and AST) that improved the liver function. PEEH was also able to improve the activity of liver antioxidants (GSH, SOD and CAT), decrease lipid peroxidation, and restore it to a normal level. This was an indication of decreasing oxidative stress caused by MTX. PEEH treatment (100 and 200 mg/kg) significantly reduced the level of proinflammatory cytokines (P ≤ 0.01) in dose-dependent manner. These effects were confirmed by histological examination of the liver. In conclusion, polysaccharide rich fraction of E. herbacea tubers showed liver protection effect through reduction of the oxidative stress and produced an anti-inflammatory action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. J. Sun, B. Zhou, C. Tang, et al., Int. J. Biol. Macromol., 115, 69 – 76 (2018).

    Article  CAS  Google Scholar 

  2. A. A. El Faras and A. L. Elsawaf, Tanta Med. J., 45(2), 92–98 (2017).

    Article  Google Scholar 

  3. C. V. Rao, A. Singh, G. R. Kumar, et al., Am. J. Phytomed. Clin. Ther., 3, 064 – 078 (2015).

    Google Scholar 

  4. S. B. Mishra, H. Pandey, and A. C. Pandey, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4, 035007 (2013).

    CAS  Google Scholar 

  5. M. Pravenec, V. Kozich, J. Krijt, et al., Am. J. Hypertens., 26(1), 135–140 (2013).

    Article  CAS  Google Scholar 

  6. D. A. Patil, Flora of Dhule and Nandurbar Districts, Bishan Singh and Mahendar Pal Singh Publisher and Distributor, Dehradun (2003).

    Google Scholar 

  7. A. N. Narkhede, D. M. Kasote, A. A. Kuvalekar, et al., J. Int. Ethnopharmacol., 5(2), 198 – 204 (2016).

    Article  Google Scholar 

  8. R. Kshirsagar, Y. Kanekar, S. D. Jagtap, et al., Int. J. Green Pharm., 4(3), 147 (2010).

    Article  Google Scholar 

  9. M. Maridass, G. Raju, S. Ghanthikumar, PharmacologyOnline, 3, 631 – 636 (2008).

    Google Scholar 

  10. A. Aberoumand and S. S. Deokule, Asian J. Food Agric. Ind. Organiz., 2(2), 203 – 209 (2009).

    Google Scholar 

  11. A. U. Tatiya, P. M. Puranik, S. J. Surana, et al., Bangladesh J. Pharmacol., 8, 269 – 275 (2013).

    Article  Google Scholar 

  12. W. C. Evans, Trease and Evans Pharmacognosy, 15th Edn., Saunders’ Publication, Toronto (2005), pp. 293 – 321.

    Google Scholar 

  13. X. Y. Wang, J. Y. Yin, S. P. Nie, et al., Int. J. Biol. Macromol., 107(Pt. A), 1310 – 1319 (2018).

  14. L. Gong,, T. Lei, Z. Zhang, et al., Trop. J. Pharm. Res., 17(7), 1317 – 1324 (2018).

    Article  CAS  Google Scholar 

  15. OECD Guidelines for Acute Toxicity of Chemicals, Organization for Economic Co-operation and Development; Paris (2001), No. 423.

  16. N. Jahovic, H. Çevik, A. Ö. ªehirli, et al., J. Pineal Res., 34(4), 282 – 728 (2003).

  17. S. De, T. Sen, and M. Chatterjee, Mol. Cell. Biochem., 409(1 – 2), 191 – 197 (2015).

  18. J. Hogberg, R. E. Larson, A. Kristoferson, et al., Biochem. Biophys. Res. Commun., 56(3), 836e842 (1974).

    Article  Google Scholar 

  19. J. Cao, X. Xia, X. Dai, et al., Environ. Toxicol. Pharmacol., 37(2), 571 – 579 (2014).

    Article  CAS  Google Scholar 

  20. D. Grotto, L. S. Maria, J. Valentini, et al., Quím. Nova, 32(1), 169 – 174 (2009).

    Article  CAS  Google Scholar 

  21. Y. Sun, L. W. Oberley, and Y. Li, Clin. Chem., 34(3), 497 – 500 (1988).

    Article  CAS  Google Scholar 

  22. L. Goth, Clin. Chim. Acta, 196 (2 – 3), 143–151 (1991).

  23. M. A. Moron, J. W. Depierre, and B. Mannervick, Biochim. Biophys. Acta, 582(1), 67 – 78 (1979).

    Article  CAS  Google Scholar 

  24. L. G. Luna. Manual of Histological Staining Methods of the Armed Forces, Institute of Pathology, London (1996), pp. 1 – 31.

    Google Scholar 

  25. F. Bouaziz, M. Koubaa, R. E. Ghorbel, et al., Int. J. Biol. Macromol., 95, 667 – 674 (2017).

    Article  CAS  Google Scholar 

  26. A. Tatiya, M. Kalaskar, Y. Patil, et al., Indian J. Trad. Knowledge, 17(1), 141 – 147 (2018).

    Google Scholar 

  27. C. Jaya and V. A. Anuradha. Food Chem. Toxicol., 48(8 – 9), 2021 – 29 (2010).

  28. A. A. El-Sheikh, M. A. Morsy, A. M. Abdalla, et al., Mediat. Inflam., 2015, 859383 (2015).

    Article  Google Scholar 

  29. A. Ozcicek, N. Cetin, F. K. Cimen, et al., Med. Princ. Pract., 25(2), 181 – 186 (2016).

    Article  Google Scholar 

  30. B. Halliwell, J. M. C. Gutteridage, and C. E. Cross, J. Lab. Clin. Med., 119(6), 598 – 620 (1992).

    CAS  Google Scholar 

  31. S. Mehrzadi, I. Fatemi, M. Esmaeilizadeh, et al., Biomed. Pharmacother., 97, 233 – 239 (2018).

    Article  CAS  Google Scholar 

  32. I. Armagan, D. Bayram, I. A. Candan, et al., Environ. Toxicol. Pharmacol., 39(3), 1122 – 1131 (2015).

    Article  CAS  Google Scholar 

  33. N. Ali, S. Rashid, S. Nafees, et al., Mol. Cell. Biochem., 385(1 – 2), 215 – 223 (2014).

  34. N. Vardi, H. Parlakpinar, A. Cetin, et al., Toxicol. Pathol., 38(4), 592 – 597 (2010).

    Article  CAS  Google Scholar 

  35. E. Uzar, H. R. Koyuncuoglu, E. Uz, et al., Mol. Cell Biochem., 291(1 – 2), 63 – 68 (2006).

  36. T. Tunalý-Akbay, O. Sehirli, F. Ercan, et al., J. Pharm. Pharm. Sci., 13(2), 303 – 310 (2010).

    Article  Google Scholar 

  37. F. Tacke, T. Luedde, and C. Trautwein, Clin. Rev. Allergy Immunol., 36(1), 4 – 12 (2009).

    Article  CAS  Google Scholar 

  38. T. A. A. El-Aziz, R. H. Mohamed, H. F. Pasha, et al., Clin. Exp. Med., 12(4), 233 – 240 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santram Lodhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, K.D., Vadnere, G.P., Kori, M.L. et al. Ameliorative Effect of Polysaccharide Rich Fraction from Eulophia herbacea Against Methotrexate Induced Liver Damage in Rats. Pharm Chem J 55, 466–475 (2021). https://doi.org/10.1007/s11094-021-02452-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02452-7

Keywords

Navigation