Skip to main content
Log in

Secondary Metabolite Profiling Via LC-HRMS Q-TOF of Foleyola Billotii, an Endemic Brassicaceae Plant of North-Western Sahara

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

LC-HRMS Q-TOF method was used to identify and quantify metabolites of Foleyola billotii Maire plant. A series of 15 compounds were tentatively identified: three glucosinolates, 2 aliphatic (progoitrin and gluconapin) and 1 indolic (glucobrassicin); six chlorogenic acids, four coumaroyl quinic acid (CoQA) isomers and two feruloyl quinic acid (FQA) isomers; two diglycosylated flavonols, one quercetin-derived and one kaempferol-derived; three sinapic acid derivatives, sinapoyl threonic acid, hexose sinapate and a third derivative supposedly attributed to a feruloyl quinic acid sinapate; and finally, a glycosylated trans-cinnamic acid which could correspond to feruloylthreonic acid (FTA). Glucosinolates content was 55 times higher in cultivated plants; chlorogenic acids and flavonols increased too by 5 and 3.5 times, respectively. In contrast, sinapates decreased by 3 times in cultivated plants, this last result can be explained by reduced UV-B intensity in the north of Algeria. The change in F. billotii compound profile was more quantitative rather than qualitative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. S. I.Warwick, K. Mummenhoff, C. A. Sauder, et al., Plant Syst. Evol., 285, 1 (2010).

    Google Scholar 

  2. P. D. Coley and M. T. Aide, Plant-Animal Interact., 2, 25 (1991).

    Google Scholar 

  3. H. N. Matsuura and A. G. Fett-Neto, in: Plant Toxins, edited by C. R. Carlini and R. Ligabue-Braun, Springer Netherlands: Dordrecht (2017), pp. 243–261.

    Google Scholar 

  4. A. R.War, M. G. Paulraj, T. Ahmad, et al., Plant Signal. Behav., 7, 1306 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. T. Bohinc, S. G. Ban, D. Ban, et al., Arch. Biol. Sci., 64, 821 (2012).

    Google Scholar 

  6. R. Yatusevich, S. G. Mugford, C. Matthewman, et al., Plant J., 62, 1 (2010).

    CAS  PubMed  Google Scholar 

  7. M. Moreira-Rodriguez, V. Nair, J. Benavides, et al., Int. J. Mol. Sci., 18, 1 (2017).

    Google Scholar 

  8. M. Kos, B. Houshyani, R. Wietsma, et al., Phytochemistry, 77, 162 (2012).

    CAS  PubMed  Google Scholar 

  9. C. Zaghdoud, C. Alcaraz-Lopez, C. Mota-Cadenas, et al., Sci. World J., 2012, 291436 (2012).

    Google Scholar 

  10. A. T. Dinkova-Kostova and R. V. Kostov, Trends Mol. Med., 18, 337 (2012).

    CAS  PubMed  Google Scholar 

  11. M. S. Jaafaru, N. Nordin, K. Shaari, et al., PLoS One, 13, e0196403 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Y. Chen, G. Wang, H. Wang, et al., PLoS One, 9 (2014).

  13. V. Marques and A. Farah, Food Chem., 113, 1370 (2009).

    CAS  Google Scholar 

  14. B. Halliwell, Nutr. Rev., 52, 253 (1994).

    CAS  PubMed  Google Scholar 

  15. M. N. Ombra, A. Cozzolino, F. Nazzaro, et al., Food Chem., 218, 335 (2017).

    CAS  PubMed  Google Scholar 

  16. Z. Li, H. W. Lee, X. Liang, et al., Molecules, 23, (2018).

  17. J. Xiao, T. S. Muzashvili, and M. I. Georgiev, Biotechnol. Adv., 32, 1145 (2014).

    CAS  PubMed  Google Scholar 

  18. C. Brunetti, Abiotic Stress Responses in Plants (2016).

  19. A. Mahmoud, A. M. El Sheikh, and S. A. Baset, J. Arid Environ., 6, 87 (2018).

    Google Scholar 

  20. K. Duhrkop, M. Fleischauer, M. Ludwig, et al., Nat. Methods, 16, 299 (2019).

    PubMed  Google Scholar 

  21. R. C. Team, A Language and Environment for Statistical Computing, Vienna, Austria (2013).

    Google Scholar 

  22. J. B. Bialecki, J. Ruzicka, C. S. Weisbecker, et al., J. Mass Spectrom., 45, 272 (2010).

    CAS  PubMed  Google Scholar 

  23. I. M. Hwang, B. Park, Y. M. Dang, et al., Food Chem., 282, 127 (2019).

    CAS  PubMed  Google Scholar 

  24. J. H. Chun, N. H. Kim, M. S. Seo, et al., Saudi J. Biol. Sci., 25, 71 (2018).

    CAS  PubMed  Google Scholar 

  25. R. Font, M. Del Rio-Celestino, E. Cartea, et al., Phytochemistry, 66, 175 (2005).

    CAS  PubMed  Google Scholar 

  26. M. P. Argentieri, R. Accogli, F. P. Fanizzi, et al., Planta Med., 77, 287 (2011).

    CAS  PubMed  Google Scholar 

  27. G. L. Petretto, P. P. Urgeghe, D. Massa, et al., Plant Physiol. Biochem., 141, 30 (2019).

    CAS  PubMed  Google Scholar 

  28. N. Forster, C. Ulrichs, M. Schreiner, et al., Food Chem., 166, 456 (2015).

    PubMed  Google Scholar 

  29. P. Soundararajan and J. S. Kim, Molecules, 23, 2983 (2018).

    PubMed Central  Google Scholar 

  30. M. N. Clifford, K. L. Johnston, S. Knight, et al., J. Agric. Food Chem., 51, 2900 (2003).

    CAS  PubMed  Google Scholar 

  31. Z. Gengmao, L. Shihui, S. Xing, et al., Sci. Rep., 5, 12696 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. K. Yan, M. Cui, S. Zhao, et al., Front. Plant Sci., 7, 1 (2016).

    Google Scholar 

  33. M. I. Mhlongo, P. A. Steenkamp, L. A. Piater, et al., Front. Plant Sci., 7, 1527 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. H. F. Harrison, T. R. Mitchell, J. K. Peterson, et al., J. Am. Soc. Hortic. Sci., 133, 492 (2008).

    Google Scholar 

  35. E. Wojciechowska, C. H. Weinert, B. Egert, et al., Eur. J. Plant Pathol. 139, 735 (2014).

    CAS  Google Scholar 

  36. C. Cle, L. M. Hill, R. Niggeweg, et al., Phytochemistry, 69, 2149 (2008).

    CAS  PubMed  Google Scholar 

  37. V. Petruova, Z. Duèaiova, and M. Repèak, Photochem. Photobiol., 90, 1061 (2014).

    Google Scholar 

  38. A. O. Taylor, Phytochemistry, 7, 63 (1968).

    CAS  Google Scholar 

  39. T. R. Nuringtyas, Y. H. Choi, R. Verpoorte, et al., Phytochemistry, 78, 89 (2012).

    CAS  PubMed  Google Scholar 

  40. G. W. Felton, K. Donato, R. J. Del Vecchio, et al., J. Chem. Ecol., 15, 2667 (1989).

    CAS  PubMed  Google Scholar 

  41. G. W. Felton, J. Workman, and S. S. Duffey, J. Chem. Ecol., 18, 571 (1992).

    CAS  PubMed  Google Scholar 

  42. C. E. Narvaez-Cuenca, J. P. Vincken, and H. Gruppen, J. Agric. Food Chem., 61, 1563 (2013).

    CAS  PubMed  Google Scholar 

  43. W. S. Pierpoint, Biochem. J., 112, 619 (2015).

    Google Scholar 

  44. M. Kato, R. Ochiai, K. Kozuma, et al., Evidence-Based Complement. Altern. Med. 2018, 1 (2018).

    Google Scholar 

  45. K. Saitou, R. Ochiai, K. Kozuma, et al., Nutrients, 10, 1337 (2018).

    PubMed Central  Google Scholar 

  46. N. Liang and D. D. Kitts, Nutrients, 8, 1 (2015).

    Google Scholar 

  47. S. Li, H. Bian, Z. Liu, et al., Eur. J. Pharmacol., 674, 65 (2012).

    CAS  PubMed  Google Scholar 

  48. N. Niæiforoviæ and H. Abramoviæ, Compr. Rev. Food Sci. Food Saf., 13, 34 (2014).

    Google Scholar 

  49. J. J. Sheahan, Am. J. Bot., 83, 679 (1996).

    CAS  Google Scholar 

  50. N. Martinoviæ, H. Abramovie, and N. Poklar Ulrih, Biochim. Biophys. Acta: Biomembr., 1861, 1 (2019).

    Google Scholar 

  51. T. M. Wang, Y. Fu, W. J. Yu, et al., Molecules, 22 (2017).

  52. E. Cadahia, B. F. De Simon, I. Aranda, et al., Phytochem. Anal., 26, 171 (2015).

    CAS  PubMed  Google Scholar 

  53. P. Velasco, M. Francisco, D. A. Moreno, et al., Phytochem. Anal., 22, 144 (2011).

    CAS  PubMed  Google Scholar 

  54. N. Rahmouni, D. C. G. A. Pinto, N. Beghidja, et al., Molecules, 23, 1 (2018).

    Google Scholar 

  55. S. Kumar and A. K. Pandey, Sci. World J. 2013, 1 (2013).

    Google Scholar 

  56. S. Kumar, A. Mishra, and A. K. Pandey, BMC Complement. Altern. Med., 13, 120 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. S. Mani, Free Radicals Hum. Heal. Dis., 3 (2014).

  58. M. Ishida, M. Hara, N. Fukino, et al., Breed. Sci., 64, 48 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. T. S. Zwier, P. S.Walsh, F. Allais, et al., J. Am. Chem. Soc., 136, 14780 (2014).

    PubMed  Google Scholar 

  60. S. A. Baba and N. Ashraf, Arch. Biochem. Biophys., 667, 70 (2019).

    CAS  PubMed  Google Scholar 

  61. G. Agati, C. Brunetti, M. Di Ferdinando, et al., Plant Physiol. Biochem., 72, 35 (2013).

    CAS  PubMed  Google Scholar 

  62. S. V Jovanovic, S. Steenken, Y. Hara, et al., J. Chem. Soc. Perkins Trans. 2, 2497 (1996).

    Google Scholar 

  63. A. Sharma, B. Shahzad, A. Rehman, et al., Molecules, 24, 2452 (2019).

    CAS  PubMed Central  Google Scholar 

  64. V. Martinez, T. C. Mestre, F. Rubio, et al., Front. Plant Sci., 7, 838 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the Administration of Forests’ Conservation of Tindouf for their precious help and accompanying during plant collection and for providing all necessary information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazid Mahdaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdaoui, Y., Perreau, F., Hadj-Arab, H. et al. Secondary Metabolite Profiling Via LC-HRMS Q-TOF of Foleyola Billotii, an Endemic Brassicaceae Plant of North-Western Sahara. Pharm Chem J 54, 734–744 (2020). https://doi.org/10.1007/s11094-020-02264-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02264-1

Keywords

Navigation