Skip to main content
Log in

Molecular and Crystal Structure of N-Allylamide-9-Nitrocytisine

  • STRUCTURE OF CHEMICAL COMPOUNDS, METHODS OF ANALYSIS AND PROCESS CONTROL
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

X-ray diffraction measurements and quantum-chemical calculations of the crystal structures of nitromethylcytisines were performed. N-allylamide-9-nitrocytisine (III) was compared to previously studied N-methyl-9-nitrocytisine (II). The crystal structure of III was stabilized as a result of participation of the amide in relatively strong N–H···OH-bonds. The packing density of crystals of III was higher than that of II. Compound III had a significantly higher melting point, in agreement with our previously suggested positive correlation between the packing density and melting point. Compound III was readily soluble in water, in contrast to II, because of a substantial role of specific solvation effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Rouden, M. C. Lasne, J. Blanchet, and J. Baudoux, Chem. Rev., 114, 712 – 778 (2014).

    Article  CAS  Google Scholar 

  2. I. Tspysheva, A. Koval’skaya, P. Petrova, et al., Tetrahedron, 75, 2933 – 2943 (2019).

    Article  Google Scholar 

  3. I. P. Tsypysheva, A. V. Koval’skaya, A. V. Lobov, et al., Khim. Prir. Soedin., 920 – 923 (2012); Chem. Nat. Compd., 48, 1042 – 1046 (2013).

  4. N. Houllier, J. M. Gopisetti, P. Lestage, et al., Bioorg. Med. Chem. Lett., 20, 6667 (2010).

    Article  CAS  Google Scholar 

  5. P. Imming, P. Klaperski, M. T. Stubbs, et al., Eur. J. Med. Chem., 36, 375 (2001).

    Article  CAS  Google Scholar 

  6. N. S. Makara, S. F. Gabdrakhmanova, T. A. Sapozhnikova, et al., Khim-farm. Zh, 49(5), 16 – 18 (2015); Pharm. Chem. J., 49(5), 301 – 303 (2015).

  7. I. P. Tsypysheva, A. V. Koval’skaya, N. S. Makara, et al., Khim. Prir. Soedin., 565 – 570 (2012); Chem. Nat. Compd., 48, 629 – 634 (2012).

  8. I. P. Tsypysheva, A. V. Koval’skaya, A. V. Lobov, et al., Khim. Prir. Soedin., 606 – 609 (2013); Chem. Nat. Compd., 49, 707 – 711 (2013).

  9. A. F. Smol’yakov, V. A. Karnoukhova, S. V. Osintseva, et al., Khim.-farm. Zh., 50(12), 55 – 60 (2016); Pharm. Chem. J., 50(12), 826 – 832 (2017).

  10. V. A. Fedorova, R. A. Kadyrova, A. V. Slita, et al., Nat. Prod. Res., (2019); https://doi.org/10.1080/14786419.2019.1696791.

  11. APEX2, Bruker AXS Inc., Madison, Wisconsin, USA, 2009.

  12. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 64, 112 – 122 (2008).

  13. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr., 42, 339 – 341 (2009).

    Article  CAS  Google Scholar 

  14. G. Palyi, R. Kurdi, and C. Zucchi (eds.), Advances in Asymmetric Autocatalysis and Related Topics, Elsevier Inc., 2017.

  15. J. Bernstein, Polymorphism in Molecular Crystals, Clarendon Press, Oxford, 2002 [Translated from English by J. Bernstein, Nauka, Moscow, 2007].

  16. K. Yu. Suponitskii, T. V. Timofeeva, and M. Yu. Antipin, Usp. Khim., 75, 515 – 556 (2006); Russ. Chem. Rev., 75, 457 – 496 (2006).

  17. O. B. Kazakova, D. V. Kazakov, E. Yu. Yamansarov, et al., Tetrahedron Lett., 52, 976 (2011).

    Article  CAS  Google Scholar 

  18. R. S. Rowland and R. Taylor, J. Phys. Chem., 100, 7384 – 7391 (1996).

    Article  CAS  Google Scholar 

  19. A. B. Sheremetev, I. L. Yudin, and K. Yu. Suponitsky, Mendeleev Commun., 16, 264 – 266 (2006).

    Article  Google Scholar 

  20. A. B. Sheremetev, N. S. Aleksandrova, S. S. Semyakin, et al., Chem. Asian J., 14, 4255 – 4261 (2019).

    Article  CAS  Google Scholar 

  21. P. M. Zorkii, V. K. Bel’skii, S. G. Lazareva, and M. A. Porai-Koshits, Zh. Strukt. Khim., 8, 312 – 316 (1967); J. Struct. Chem., 8, 267 – 270 (1967).

  22. K. Yu. Suponitsky, V. G. Tsirelson, and D. Feil, Acta Crystallogr., Sect. A: Found. Crystallogr., 55, 821 – 827 (1999).

  23. A. B. Sheremetev, N. S. Aleksandrova, N. V. Palysaeva, et al., Chem. Eur. J., 19, 12446 – 12457 (2013).

    Article  CAS  Google Scholar 

  24. A. Romanova, K. A. Lyssenko, and I. V. Ananyev, J. Comput. Chem., 39, 1607 (2018).

    Article  CAS  Google Scholar 

  25. K. Yu. Suponitsky, K. A. Lyssenko, I. V. Ananyev, et al., Cryst. Growth Des., 14, 4439 – 4449 (2014).

    Article  CAS  Google Scholar 

  26. J. D. Dunitz and A. Gavezzotti, Cryst. Growth Des., 5, 2180 – 2189 (2005).

    Article  CAS  Google Scholar 

  27. A. O. Dmitrienko, V. A. Karnoukhova, A. A. Potemkin, et al., Khim. Geterotsikl. Soedin., 53, 532 – 539 (2017); Chem. Heterocycl. Compd., 53, 532 – 539 (2017).

  28. A. B. Sheremetev, B. V. Lyalin, A. M. Kozeev, et al., RSC Adv., 5, 37617 – 37625 (2015).

    Article  CAS  Google Scholar 

  29. A. A. Gidaspov, V. V. Bakharev, and K. Yu. Suponitsky, RSC Adv., 6, 104325 – 104329 (2016).

    Article  CAS  Google Scholar 

  30. A. B. Sheremetev, V. L. Korolev, A. A. Potemkin, et al., Asian J. Org. Chem., 5, 1388 – 1397 (2016).

    CAS  Google Scholar 

  31. A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, et al., RSC Adv., 6, 34921 – 34934 (2016).

  32. I. L. Dalinger, A. Kh. Shakhnes, K. A. Monogarov, et al., Mendeleev Commun., 25, 429 – 431 (2015).

    Article  CAS  Google Scholar 

  33. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput., 3, 289 – 300 (2007).

    Article  CAS  Google Scholar 

  34. J. Sponer, K. E. Riley, and P. Hobza, Phys. Chem. Chem. Phys., 10, 2595 – 2610 (2008).

    Article  CAS  Google Scholar 

  35. K. Yu. Suponitsky, A. E. Masunov, and M. Yu. Antipin, Mendeleev Commun., 18, 265 – 267 (2008).

    Article  CAS  Google Scholar 

  36. K. Yu. Suponitsky, A. E. Masunov, and M. Yu. Antipin, Mendeleev Commun., 19, 311 – 313 (2009).

    Article  CAS  Google Scholar 

  37. K. Yu. Suponitsky and A. E. Masunov, J. Chem. Phys., 139, 094310 (2013).

  38. K. Yu. Suponitsky, S. Tafur, and A. E. Masunov, J. Chem. Phys., 129, 044109 (2008).

  39. K. Yu. Suponitsky, Y. Liao, and A. E. Masunov, J. Phys. Chem. A, 113, 10994 – 11001 (2009).

    Article  CAS  Google Scholar 

  40. A. B. Sheremetev, I. L. Yudin, N. V. Palysaeva, et al., J. Heterocycl. Chem., 49, 394 – 401 (2012).

    Article  CAS  Google Scholar 

  41. K. Yu. Suponitsky, N. I. Burakov, A. L. Kanibolotsky, and V. A. Mikhailov, J. Phys. Chem. A, 120, 4179 – 4190 (2016).

    Article  CAS  Google Scholar 

  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.

  43. I. L. Dalinger, O. V. Serushkina, D. L. Lipilin, et al., ChemPlus-Chem, 84, 802 – 809 (2019).

  44. A. E. Frumkin, N. V. Yudin, K. Yu. Suponitsky, and A. B. Sheremetev, Mendeleev Commun., 28, 135 (2018).

    Article  CAS  Google Scholar 

  45. N. V. Palysaeva, A. G. Gladyshkin, I. A. Vatsadze, et al., Org. Chem. Front., 6, 249 (2019).

    Article  CAS  Google Scholar 

  46. I. L. Dalinger, A. V. Kormanov, K. Yu. Suponitsky, et al., Chem. Asian J., 13, 1165 (2018).

    Article  CAS  Google Scholar 

  47. I. L. Dalinger, K. Yu. Suponitsky, T. K. Shkineva, et al., J. Mater. Chem. A, 6, 14780 (2018).

    Article  CAS  Google Scholar 

  48. I. L. Dalinger, O. V. Serushkina, N. V. Muravyev, et al., J. Mater. Chem. A, 6, 18669 (2018).

    Article  CAS  Google Scholar 

  49. A. A. Larin, N. V. Muravyev, A. N. Pivkina, et al., Chem. Eur. J., 25, 4225 (2019).

    Article  CAS  Google Scholar 

  50. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.

  51. E. Espinosa, I. Alkorta, I. Rozas, et al., Chem. Phys. Lett., 336, 457 (2001).

    Article  CAS  Google Scholar 

  52. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett., 285, 170 (1998).

    Article  CAS  Google Scholar 

  53. I. V. Anan’ev, M. G. Medvedev, S. M. Aldoshin, et al., Izv. Akad. Nauk, Ser. Khim., 1473 (2016); Russ. Chem. Bull., 65, 1473 (2016).

  54. K. Yu. Suponitskii, K. A. Lysenko, M. Yu. Antipin, et al., Izv. Akad. Nauk, Ser. Khim., 2065 – 2071 (2009); Russ. Chem. Bull., 58, 2129 (2009).

Download references

Acknowledgments

The work was financially supported by the Russian Science Foundation (Project RNF No. 19 – 13 – 00437). The x-ray structure analysis was supported by the Ministry of Science and Higher Education of the Russian Federation and used scientific equipment at the Molecular Structure Research Center of NIOEC, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Smol’yakov.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 54, No. 6, pp. 60 – 64, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smol’yakov, A.F., Shapovalov, A.V., Lashakov, A.A. et al. Molecular and Crystal Structure of N-Allylamide-9-Nitrocytisine. Pharm Chem J 54, 654–658 (2020). https://doi.org/10.1007/s11094-020-02253-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02253-4

Keywords

Navigation