Skip to main content
Log in

Optimization of the Composition and Production Technology of Fucoidan Tablets and their Biopharmaceutical Evaluation

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The discovery and development of drugs that can compete in effectiveness with direct anticoagulants is a critical problem. Fucoidan is a complex branched heteropolysaccharide with anticoagulant and antithrombic activity. Fucoidan drug substance is hygroscopic and possesses poor technological properties. This study was aimed at development of the optimum composition and technology of fucoidan tablets and their biopharmaceutical evaluation. The generalized Harrington desirability function and dispersion and regression analyses were used for optimization of the fucoidan tablet formulation. The contents of crospovidone and lactose were the most significant factors affecting the disintegration and compressibility of model tablets. The lactose content had the greatest impact on the Carr index and Hausner ratio. The in vitro dissolution curves of the tablets were compared (at pH 1.2, 5.7, and 6.8). The in vitro release of fucoidan from the developed tablets obeyed a first-order kinetic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N. A. Ushakova, G. E. Morozevich, N. E. Ustyuzhanina, et al., Biomed. Khim., 54(5), 597 – 606 (2008).

    CAS  PubMed  Google Scholar 

  2. A. G. Odinets and L. V. Tatarinova, Lech. Delo, 49(3), 40 – 44 (2016).

    Google Scholar 

  3. J. H. Fitton, D. N. Stringer, A. Y. Park, and S. S. Karpiniec, Mar. Drugs, 17, 571 (2019).

    Article  CAS  Google Scholar 

  4. E. I. Oduah, R. J. Linhardt, and S. T. Sharfstein, Pharmaceuticals, 9(3), 38 (2016).

    Article  Google Scholar 

  5. S. K. Zyryanov and Yu. B. Belousov, Aterotromboz, No. 1, 38 – 43 (2013).

  6. B. L. Limone, A. V. Hernandez, D. Michalak, et al., Thromb. Res., 132(4), 420 – 426 (2013).

    Article  CAS  Google Scholar 

  7. M. V. Khruslov, Flebologiya, 9(3), 41 – 46 (2015).

    Article  Google Scholar 

  8. S. V. Konstantinides, A. Torbicki, G. Agnelli, et al., Eur. Heart J., 35(43), 3033 – 3069 (2014).

    Article  CAS  Google Scholar 

  9. N. N. Besednova and T. N. Zvyagintseva (eds.), Fucoidans, Sulfated Polysaccharides from Brown Algae. Structure, Enzymatic Transformation and Biological Properties [in Russian], Vladivostok (2014).

  10. X. Zhao, F. Guo, J. Hu, et al., Thromb. Res., 144, 46 – 52 (2016).

    Article  CAS  Google Scholar 

  11. O. N. Pozharitskaya, A. N. Shikov, N. M. Faustova, et al., Mar. Drugs, 16(4), 132 (2018).

    Article  Google Scholar 

  12. M. R. Irhimeh, J. H. Fitton, and R. M. Lowenthal, Blood Coagul. Fibrinolysis, 20(7), 607 – 610 (2009).

    Article  CAS  Google Scholar 

  13. E. D. Obluchinskaya, M. N. Makarova, O. N. Pozharitskaya, and A. N. Shikov, Khim.-farm. Zh., 49(3), 35 – 38 (2015); Pharm. Chem. J., 49(3), 183 – 186 (2015).

  14. S. N. Bykovskii (ed.), Pharmaceutical Development: Concept and Practical Recommendations. Scientific-Practical Guideline for the Pharmaceutical Branch [in Russian], Pero, Moscow (2015).

  15. V. M. Kosman, E. D. Obluchinskaya, O. N. Pozharitskaya, et al., Farmatsiya, 66(6), 20 – 24 (2017).

    CAS  Google Scholar 

  16. H. K. Raslan and H. Maswadeh, Indian J. Pharm. Sci., 68, 308 – 312 (2006).

    Article  CAS  Google Scholar 

  17. A. V. Pichkalev, Issled. Naukograda, 1 (2012).

  18. N. V. Slovesnova, A. Yu. Petrov, S. A. Glavatskikh, et al., Razrab. Regist. Lek. Sredstv, 23(2), 32 – 37 (2018).

    Google Scholar 

  19. D. V. Yudina, E. V. Blynskaya, K. V. Alekseev, et al., Farmatsiya, 67(3), 35 – 40 (2018).

    CAS  Google Scholar 

  20. S. L. Akhnazarova and L. S. Gordeev (eds.), Use of the Harrington Desirability Function to Optimize Chemical Technology. Study-Methodology Guide [in Russian], RKhTU im. D. S. Mendeleeva, Moscow (2003).

  21. Methodical Instructions for Drug Bioequivalence Assessment [in Russian], MZSR RF, Moscow (2008).

  22. E. V. Stoyanov and R. Vollmer, Prom. Obozrenie, 4(15), 48 – 49 (2009).

    Google Scholar 

  23. F. T. Kholtoev, N. S. Faizullaeva, M. U. Usubbaev, and Kh. M. Khakimov, Khim.-farm. Zh., 37(6), 42 – 45 (2003); Pharm. Chem. J., 37(6), 321 – 324 (2003).

  24. E. D. Obluchinskaya, Khim.-farm. Zh., 43(6), 22 – 26 (2009); Pharm. Chem. J., 43(6), ID 328 (2009).

  25. K. Kadena, M. Tomori, M. Iha, and T. Nagamine, Mar. Drugs, 16(8), E254 (2018).

    Article  Google Scholar 

  26. Y. Tokita, M. Hirayama, K. Nakajima, et al., J. Nutr. Sci. Vitaminol., 63(6), 419 – 421 (2017).

    Article  Google Scholar 

  27. T. I. Imbs, T. N. Zvyagintseva, and S. P. Ermakova, Int. J. Biol. Macromol., 142, 778 – 781 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Shikov.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 54, No. 5, pp. 38 – 42, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obluchinskaya, E.D., Pozharitskaya, O.N., Flisyuk, E.V. et al. Optimization of the Composition and Production Technology of Fucoidan Tablets and their Biopharmaceutical Evaluation. Pharm Chem J 54, 509–513 (2020). https://doi.org/10.1007/s11094-020-02237-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02237-4

Keywords

Navigation