Skip to main content
Log in

Strategies for Solubility Enhancement of Anthelmintics (Review)

  • DRUG SYNTHESIS METHODS AND MANUFACTURING TECHNOLOGY
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Most drug substances are poorly soluble in water so that their efficacies must be improved by increasing the dosage, which not only creates economic problems but also increases the toxicity of the future medicine. These problems can be solved by developing various dosage forms, which involves additional financial costs, complicates the technology, increases development times to introduce the future medicine, etc. Another approach to improving the solubility of such drug substances is the development of methods and technologies for producing solid dispersions of these drug substances with excipients (polymers, dispersants, surfactants, etc.). The present review covers the development and application of mechanochemical technology to modify sparingly soluble anthelmintic drugs. The technology consists essentially of joint mechanical treatment of a drug substance and polymer in grinder-activators of controlled energy. This technology uses one stage and avoids the use of solvents, heating, evaporation, etc. The resulting solid dispersions include supramolecular systems with increased solubility and better bioavailability and are also highly active with reduced consumption of the active ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Patil, K. S. Wagh, V. B. Parik, et al., Int. J. Pharm. Sci. Rev. Res., 8(2), 74 – 80 (2011).

    CAS  Google Scholar 

  2. A. Chaudhary, U. Nagaich, N. Gulati, et al., J. Adv. Pharm. Educ. Res., 2(1), 32 – 67 (2012).

    Google Scholar 

  3. V. T. Wagh and R. D. Wagh, Int. J. Pharm. Technol., 6(4), 3027 – 3045 (2015).

    CAS  Google Scholar 

  4. A. Charalabidis, M. Sfouni, C. Bergstrom, et al., Int. J. Pharm., 566, 264 – 281 (2019).

    Article  CAS  Google Scholar 

  5. P. Kalpana, S. Manish, S. K. Dinesh, et al., Drug Invent. Today, 2(7), 349 – 357 (2010).

    Google Scholar 

  6. S. R. Yellela and T. S. R. Krishnaiah, J. Bioequivalence Bioavailability, 2, 28 – 36 (2010).

    Google Scholar 

  7. V. R. Vemula, V. Lagishetty, and S. Lingala, Int. J. Pharm. Sci. Rev. Res., 5(1), 41 – 51 (2010).

    CAS  Google Scholar 

  8. R. Kalyanwat and S. Patel, Int. J. Drug Formulation Res., 1, 1 – 14 (2010).

    Google Scholar 

  9. K. Dhirendra, S. Lewis, N. Udupa, et al., Pak. J. Pharm. Sci., 22(2), 234 – 246 (2009).

    CAS  PubMed  Google Scholar 

  10. A. Kalia and M. Poddar, Int. J. Pharm. Pharm. Sci., 3(4), 9 – 19 (2011).

    Google Scholar 

  11. Y. L. Jadhav, B. Parashar, P. P. Ostwal, et al., Res. J. Pharm. Technol., 5(2), 190 – 197 (2012).

    Google Scholar 

  12. K. Sadhna, S. Neha, and A. Sandeep, Int. J. Pharm. Sci. Nanotechnol., 6(1), 1915 – 1924 (2013).

    Google Scholar 

  13. R. Kumari, P. Chandel, and A. Kapoor, Indo Global J. Pharm. Sci., 3(1), 78 – 89 (2013).

    CAS  Google Scholar 

  14. J.-M. Lehn, Supramolecular Chemistry. Concepts and Perspectives, VCH, Weinheim (1995), 271 pp.

    Book  Google Scholar 

  15. I. A. Arkhipov, S. S. Khalikov, A. V. Dushkin, et al., Supramolecular Complexes of Anthelmintic Benzimidazole Drugs, Production and Properties [in Russian], Novye Avtory, Moscow (2017).

    Google Scholar 

  16. I. I. Krasnyuk, Jr., Khim.-farm. Zh., 43(4), 48 – 50 (2009); Pharm. Chem. J., 43(4), 226 – 229 (2009).

  17. I. I. Krasnyuk, Jr., Khim.-farm. Zh., 44(1), 27 – 34 (2010); Pharm. Chem. J., 44(1), 25 – 32 (2010).

  18. A. V. Belyatskaya, I. I. Krasnyuk, Jr., I. I. Krasnyuk, et al., Khim.-farm. Zh., 52(12), 39 – 44 (2018); Pharm. Chem. J., 52(12), 1001 – 1006 (2018).

  19. O. I. Nikulina, I. I. Krasnyuk, A. V. Belyatskaya, et al., Khim.- farm. Zh., 46(12), 49 – 52 (2012); Pharm. Chem. J., 46(12), 745 – 749 (2012).

  20. Y. Nakai, J. Pharm. Soc. Jpn., 105, 801 – 811 (1985).

    Article  CAS  Google Scholar 

  21. S. S. Khalikov, A. P. Kutlymuradov, E. L. Kristallovich, et al., Khim. Prir. Soedin., No. 4, 556 – 562 (1995).

  22. V. I. Dzhabarova, F. P. Kovalenko, and M. N. Lebedeva, Med. Parazitol. Parazit. Bolezni, No. 4, 40 – 44 (2004).

  23. R. Kalaiselvan, G. P. Mohanta, P. K. Manna, et al., Indian J. Pharm. Sci., Sept.-Oct., 599 – 607 (2006).

  24. G. C. Silvina, S. S. Bruni, C. E. Lanusse, et al., AAPS PharmSciTech, 11(4), 1518 – 1525 (2010).

    Article  Google Scholar 

  25. M. Vogt, K. Kunath, and J. B. Deesmann, Eur. J. Pharm. Biopharm., 68(2), 330 – 337 (2008).

    Article  CAS  Google Scholar 

  26. R. Kalaiselvan, G. P. Mohanta, and P. K. Manna, Ars Pharm., 47(1), 91 – 107 (2006).

    Google Scholar 

  27. T. V. Romanko and Yu. V. Murinov, Russ. J. Phys. Chem. A, 75(9), 1459 – 1462 (2011).

    Google Scholar 

  28. A. M. Striegel, J. J. Kirkland, W. W. Yau, et al., Modern Size Exclusion Liquid Chromatography, Practice of Gel Permeation and Gel Filtration Chromatography, Wiley, New York (2009).

    Google Scholar 

  29. A. V. Dushkin, L. P. Suntsova, and S. S. Khalikov, Fundam. Issled., No. 1, 448 – 455 (2013).

    Google Scholar 

  30. Y. S. Chistyachenko, E. S. Meteleva, M. Y. Pakharukova, et al., Curr. Drug Delivery, 12(5), 477 – 490 (2015).

    Article  CAS  Google Scholar 

  31. S. S. Khalikov, Yu. S. Chistyachenko, A. V. Dushkin, et al., Khim. Interesakh Ustoich. Razvit., 23(5), 567 – 577 (2015).

    CAS  Google Scholar 

  32. I. I. Glamazdin, I. A. Arkhipov, I. M. Odoevskaya, et al., Ross. Parazitol. Zh., No. 3, 92 – 95 (2013).

  33. I. I. Glamazdin, I. A. Arkhipov, O. P. Kurnosova, et al., Veterinariya, No. 5, 32 – 36 (2014).

  34. S. S. Khalikov, I. A. Arkhipov, A. I. Varlamova, et al., Probl. Biol. Med., No. 3, 27 – 28 (2014).

    Google Scholar 

  35. A. I. Varlamova, I. A. Arkhipov, I. M. Odoevskaya, et al., Med. Parazitol. Parazit. Bolezni, No. 4, 43 – 44 (2014).

    Google Scholar 

  36. I. A. Arkhipov, I. I. Glamazdin, A. I. Varlamova, et al., Theory and Practice of the Battle with Parasite Diseases [in Russian], Novye Avtory, Moscow (2014), pp. 28 – 36.

  37. A. I. Varlamova, V. A. Dolgoshev, K. M. Sadov, et al., Ross. Parazitol. Zh., No. 1, 71 – 74 (2015).

    Google Scholar 

  38. A. I. Varlamova, Yu. V. Limova, K. M. Sadov, et al., Ross. Parazitol. Zh., No. 1, 76 – 81 (2016).

    Google Scholar 

  39. A. I. Varlamova and I. A. Arkhipov, Ross. Parazitol. Zh., No. 1, 64 – 69 (2018).

    Google Scholar 

  40. I. A. Arkhipov, S. S. Khalikov, K. M. Sadov, et al., J. Adv. Vet. Anim. Res., 6(1), 133 – 141 (2019).

    Google Scholar 

  41. Yu. V. Limova, K. M. Sadov, E. V. Korogodina, et al., Ross. Parazitol. Zh., No. 2, 188 – 191 (2017).

    Google Scholar 

  42. I. A. Arkhipov, K. M. Sadov, Yu. V. Limova, et al., Vet. Parasitol., 246, 25 – 29 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was sponsored by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Khalikov.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 54, No. 5, pp. 33 – 37, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalikov, S.S., Dushkin, A.V. Strategies for Solubility Enhancement of Anthelmintics (Review). Pharm Chem J 54, 504–508 (2020). https://doi.org/10.1007/s11094-020-02229-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02229-4

Keywords

Navigation