Skip to main content
Log in

Pharmacophore and 3d-Qsar Modeling of new 1,3,4-Thiadiazole Derivatives: Specificity to Colorectal Cancer

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Interleukin-6 (IL-6) is the new molecular target to treat colorectal cancer (CRC) for investigation of potential lead molecules. The main objective of this study was to develop the three-dimensional quantitative structure – activity relationship (3D-QSAR) and pharmacophore model using data obtained for HT-29 cells. In this study, common pharmacophore model and atom-based 3D-QSAR were generated using newly reported 1,3,4-thiadiazole scaffolds. The dependable common pharmacophore hypothesis (AARR53) and statistically significant 3D-QSAR models were generated, where the highest correlation coefficient (r2 = 0.94) for the best-fit linear relation y = 0.96x + 0.07 was obtained by partial least squares (PLS) analysis. Again, VR series molecules displayed ligand-protein complex stability during molecular dynamics (MD) simulations. The PHASE predicted activity data and LogGI50 values demonstrated most significant atomic positions in the backbone structure of ligands in order to establish effectiveness with respect to CRC activity. Furthermore, molecular docking and dynamics simulations were carried out between top rank lead and IL-6 target which provided and defined the better binding conformational and complex stability into the active pocket of target throughout the MD simulation. These data were further confirmed through in vivo dimethylhydrazine (DMH) induced CRC rat model where it was found that both VR24 and VR27 reduced the concentration of IL-6 at the CRC site as compared to DMH control. This observation again supported computational simulation hypothesis and revealed that both compounds had good IL-6 reduction property at CRC site. The final outcome from this design strategy indicated that the pharmacophore models and 3D-QSAR hypothesis might be a path of milestone in the area of medicinal chemistry for further design of new and potent IL-6 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Hirano, K. Yasukawa, H. Harada, et al., Nature, 324, 73 – 76 (1986).

    Article  CAS  Google Scholar 

  2. K. Ishihara and T. Hirano, Cytokine Growth Factor Rev., 13, 357 – 368 (2002).

    Article  CAS  Google Scholar 

  3. M. Nian, P. Lee, N. Khaper, et al., Circ. Res.,94, 1543 – 1553 (2004).

    Article  CAS  Google Scholar 

  4. R. Kurzrock, Clin. Cancer Res., 3, 2581 – 2584(1997).

    CAS  PubMed  Google Scholar 

  5. M. Trikha, R. Corringham, B. Klein, et al., Clin. Cancer Res., 9, 4653 – 4665 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. R. A. Burger, E. A. Grosen, G. R. Ioli, et al., J. Interferon Cytokine Res., 15, 255 – 260 (1995).

    Article  CAS  Google Scholar 

  7. C. Wu, S. Wang, M. Chao, et al., Am. J. Gastroenterol, 91, 1417 – 1422 (1996).

    CAS  PubMed  Google Scholar 

  8. C. Lu, C. Sheehan, and J. W. Rak, Clin. Cancer Res., 2, 1417 – 1425 (1996).

    CAS  PubMed  Google Scholar 

  9. M. Oka, N. Iizuka, K. Yamamoto, et al., J. Interferon Cytokine Res., 16, 1001 – 1006 (1996).

    Article  CAS  Google Scholar 

  10. M. Kawano, T. Hirano, T. Matsuda, et al., Nature, 332, 83 – 85 (1988).

    Article  CAS  Google Scholar 

  11. S. Miki, M. Iwano, Y. Miki, et al., FEBS Lett., 250, 607 – 610 (1989).

    Article  CAS  Google Scholar 

  12. F. Riedel, I. Zaiss, D. Herzog, et al., Anticancer Res., 25, 2761 – 2765 (2005).

    CAS  PubMed  Google Scholar 

  13. R. Salgado, S. Junius, I. Benoy, et al., Int. J. Cancer,103, 642 – 646 (2003).

    Article  CAS  Google Scholar 

  14. D. J. George, S. Halabi, T. F. Shepard, et al., Clin. Cancer Res., 11,1815 – 1820 (2005).

    Article  CAS  Google Scholar 

  15. T. Kinoshita, H. Ito, and C. Miki, Cancer, 85, 2526 – 2531(1999).

    Article  CAS  Google Scholar 

  16. Y. C. Chung and Y. F. Chang, J. Surg. Oncol., 83, 222 – 226 (2003).

    Google Scholar 

  17. T. Kishimoto, S. Akira, and M. Narazaki, Blood, 86, 1243 – 1254 (1995).

    Article  CAS  Google Scholar 

  18. T. Taga and T. Kishimoto, Annu. Rev. Immunol.,15, 797 – 819(1997).

    Article  CAS  Google Scholar 

  19. P. C. Heinrich, I. Behrmann, H. Serge, Biochem. J.,374, 1 – 20 (2003).

    Article  CAS  Google Scholar 

  20. T. Hirano, K. Ishihara, and M. Hibi, Oncogene, 19, 2548 – 2556 (2000).

    Article  CAS  Google Scholar 

  21. S. H. Jee, C. Y. Chu, H. C. Chiu, et al., J. Invest. Dermatol., 123, 1169 – 1175 (2004

    Article  CAS  Google Scholar 

  22. C. M. Leu, F. H. Wong, C. Chang, et al., Oncogene, 22, 7809 – 7818 (2003).

    Article  CAS  Google Scholar 

  23. M. Köbel, D. Budianto, and W. D. Schmitt, Oncology, 68, 33 – 39 (2005).

    Article  Google Scholar 

  24. H. Lahm, D. Petral-Malec, A. Yilmaz-Ceyhan, et al., Eur. J. Cancer, 28, 1894 – 1899 (1992).

    Article  Google Scholar 

  25. R. Vinit, R. Amit, S. K. Ashok, et al., Anti-Cancer Agents Med. Chem. BSP-ACAMC-2016 – 1059 (2016).

  26. E. De Boer, W. De Jong, and P. Steerenberg, Cancer Immunol. Immunother., 34, 306 – 312 (1992).

    Article  Google Scholar 

  27. E. Krieger and G. Vriend, J. Comput. Chem., 36, 996 – 1007 (2015).

    CAS  Google Scholar 

  28. R. B. Best, N. V. Buchete, and G. Hummer. Biophys. J., 95, L07 – L09 (2008).

    Article  CAS  Google Scholar 

  29. M. Hirose, H. Yada, K. Hakoi, et al., Carcinogenesis,14, 2359 – 2364 (1993).

    Article  CAS  Google Scholar 

  30. S. Landi, V. Moreno, L. Gioia-Patricola, et al., Cancer Res., 63, 3560 – 3566 (2003).

    CAS  PubMed  Google Scholar 

  31. J. Małgorzata, M. Joanna, N. Andrzej, et al., Folia Histochem. Cytobiol.,49, 36 – 44 (2011).

    Google Scholar 

  32. R. Vinit, R. Amit, and S. Sudipta, Anti-Cancer Agents Med. Chem.,16, 1 (2016)

    Google Scholar 

  33. R. F. Asbury, A., Kramar, and D. G. Haller, Am. J. Clin. Oncol., ;10, 380 – 382 (1987).

Download references

Acknowledgments

The authors would like to express their gratitude to the Babasaheb Bhimrao Ambedkar University (Lucknow) for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, V., Aboumanei, M.H., Rai, A. et al. Pharmacophore and 3d-Qsar Modeling of new 1,3,4-Thiadiazole Derivatives: Specificity to Colorectal Cancer. Pharm Chem J 54, 12–25 (2020). https://doi.org/10.1007/s11094-020-02149-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02149-3

Keywords

Navigation