Skip to main content

Evaluation of Cytotoxic Activity of New Benzimidazole-Piperazine Hybrids Against Human MCF-7 and A549 Cancer Cells

A series of benzimidazole-piperazine hybrids (1437) were designed, synthesized and evaluated for their cytotoxic activity against human lung (A549) and breast (MCF-7) cancer cell lines. Preliminary evaluation revealed that most of these hybrid molecules (i.e., 1625) exhibited noteworthy and preferential antiproliferative effect against human lung cancer (A549) with IC50 values of 2.8 – 7.8 μM. Among the synthesized molecules, compound 17 showed the most balanced cytotoxic effect against lung (A549) and breast (MCF-7) cancer cells with IC50 values of 5.4 and 4.2 μM, respectively. To explore the mechanistic aspects fundamental to the observed activity, further biological studies of compounds 16, 17 and 22 were carried out. In addition, these compounds induced PARP-1 cleavage and caspase 7 activation, caused morphological changes such as bleb formation in the treated cells, and significantly increased the nuclear fragmentation. Taken all together, our findings indicate that cytotoxic activities of newly synthesized benzimidazole-piperazine hybrids are mediated through the apoptotic cell death induction. These benzimidazole derivatives have the potential for further development as anticancer agents.

This is a preview of subscription content, access via your institution.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. 1.

    Global Cancer Facts & Figures, 3rd Edition, Atlanta: American Cancer Society (2015).

  2. 2.

    R. S. Keri, A. Hiremathad, S. Budagumpi, et al., Chem. Biol. Drug Des., 86, 19 – 65 (2015).

    Article  Google Scholar 

  3. 3.

    P. Singla, V. Luxami, and K. Paul, Rsc. Adv., 4, 12422 – 12440 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    G. Yadav and S. Ganguly, Eur. J. Med. Chem., 97, 419 – 443 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    B. Caliskan, A. Yilmaz, I. Evren, et al., Med. Chem. Res., 22, 782 – 793 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    B. D. Cheson and L. Leoni, Clin. Adv. Hematol. Oncol., 9, 1 – 11 (2011).

    PubMed  Google Scholar 

  7. 7.

    M. Gentile, A. G. Recchia, C. Mazzone, et al., Expert. Opin. Pharmacother., 14, 2263 – 2280 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    F. C. Torres, M. E. Garcia-Rubino, C. Lozano-Lopez, et al., Curr. Med. Chem., 22, 1312 – 1323 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    W. Wang, D. Kong, H. Cheng, et al., Bioorg. Med. Chem. Lett., 24, 4250 – 4253 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    A. S. Alpan, S. Zencir, I. Zupko, et al., J. Enzym. Inhib. Med. Chem., 24, 844 – 849 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    N. Shrivastava, M. J. Naim, M. J. Alam, et al., Arch Pharm., 350(6) (2017).

  12. 12.

    Y. K. Yoon, M. A. Ali, A. C. Wei, et al., Eur. J. Med. Chem., 83, 448 – 454 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Y. K. Yoon and T. S. Choon, Arch. Pharm., 349, 1 – 8 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    M. K. Akkoc, M. Y. Yuksel, I. Durmaz, et al., Turk. J. Chem., 36, 515 – 525 (2012).

    Google Scholar 

  15. 15.

    A. M. Saab, M. Dobmeier, B. Koenig, et al., Anticancer Res., 33, 3027 – 3032 (2013).

    CAS  PubMed  Google Scholar 

  16. 16.

    M. Tuncbilek, E. B. Guven, T. Onder, et al., J. Med. Chem., 55, 3058 – 3065 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    A. M. Waszkielewicz, A. Gunia, N. Szkaradek, et al., Bioorg. Med. Chem. Lett., 23, 4419 – 4423 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    E. H. Cho, S. G. Chung, S. H. Lee, et al., WO1998000402 A1 (1998).

  19. 19.

    J. H. Lee, D. W. Kang, H. S. Kwon, et al., Arch. Pharm. Res., 27, 436 – 441 (2004).

    CAS  Article  Google Scholar 

  20. 20.

    M. Tuncbilek, E. B. Guven, T. Onder, et al., Med. Chem., 55, 3058 – 3065 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    E. Banoglu, B. Caliskan, S. Luderer, et al., Bioorg. Med. Chem., 20, 3728 – 3741 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    E. Banoglu, E. Celikoglu, S. Volker, et al., Eur. J. Med. Chem., 113, 1 – 10 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    S. N. Baytas, N. Inceler, A. Yilmaz, et al., Bioorg. Med. Chem., 22, 3096 – 3104 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    S. Cankara Pirol, B. Caliskan, I. Durmaz, et al., Eur. J. Med. Chem., 87, 140 – 149 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    A. Ozdemir,M. Yildiz, F. S. Senol, et al., Food. Chem. Toxicol., 109, 898 – 909 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    P. K. Dubey, P. V. V. P. Reddy, and K. Srinivas, Synth. Commun., 37, 1675 – 1681 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    R. U. Jänicke, Breast Cancer Res. Treat., 117(1), 219 – 21 (2009).

    Article  Google Scholar 

  28. 28.

    D. Boucher, V. Blais, and J. B. Denault, Proc. Natl. Acad. Sci. USA, 109(15), 5669 – 74 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Grant No: 115S016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aysun Özdemir.

Ethics declarations

Conflict of Interest

The authors state no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Özdemir, A., Turanli, S., Çalişkan, B. et al. Evaluation of Cytotoxic Activity of New Benzimidazole-Piperazine Hybrids Against Human MCF-7 and A549 Cancer Cells. Pharm Chem J 53, 1036–1046 (2020). https://doi.org/10.1007/s11094-020-02119-9

Download citation

Keywords

  • MCF-7
  • A549
  • benzimidazole
  • anticancer activity
  • apoptosis
  • cytotoxicity