Skip to main content
Log in

Design of Experiments in Pharmaceutical Development

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In order to develop high-quality pharmaceutical products, a traditional approach based the univariate or trial and error method was used in the past that led to several problems like non-reproducible, high-cost, and time consuming methods. To overcome these drawbacks, a new concept of the Design of Experiment (DoE) was introduced. DoE is a statistical element of the Quality by Design (QbD) approach introduced by British statistician Sir Ronald Fisher in 1925. The basic objectives of DoE are screening, optimization, and robustness. It involves the execution of experimental design on the basis of suitable variables along with statistical evaluation of obtained responses and exploration of the design space using mathematical or graphical approach. The statistical evaluation empowers to build up the quality of finished products and helps to meet the increasing demands for product of superior quality and standards. This article mainly focuses on the applications of DoE in pharmaceutical product development along with its objectives, design, and selection criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. A. A. Hald, History of Mathematical Statistics from 1750 to 1930, Wiley Series in Probability and Statistics, Edinburgh – New York (1998).

  2. R. A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd, London (1925).

    Google Scholar 

  3. R. A. Fisher, J. Min. Agric. Gr. Brit.,33, 503 – 513 (1926).

    Google Scholar 

  4. R. A. Fisher, The Design of Experiments, Hafner Publishing Company, Inc., New York (1935).

    Google Scholar 

  5. S. N. Politis, P. Colombo, G. Coxlombo, et al., Drug Develop. Ind. Pharm.,43, 889 – 901 (2017).

    Article  CAS  Google Scholar 

  6. Design of Experiments for Formulation Development. Pharmaceutical Technology (2005) [cited May 30, 2018]. Available from: http: // www.pharmtech.com/design-experiments-formulation-development-0?id=&sk=&date=&%0A%09%09%09& pageID=22 (Accessed June 20, 2018).

  7. A. G. Mirani and V. B. Patravale, Design of experiments: Basic concepts and its application in pharmaceutical product development, in: Pharmaceutical Product Development, (Eds.:V. B. Patravale, J. I. Disouza, and M. T. Rustomjee), CRC Press – Taylor & Francis Group, New York (2016).

  8. J. M. Juran, Juran on Quality by Design: the New Steps for Planning Quality into Goods and Services, Free Press, New York (1992).

    Google Scholar 

  9. U. S. Food and Drug Administration (2017). Final report from the FDA-EMA pilot program for the parallel assessment of quality-by-design elements of marketing applications. Available at: https: //wayback.archive-it.org/7993/ 20180125055008/https://www.fda.gov/Drugs/DevelopmentApprovalProcess/Manufacturing/ucm552716.htm (Accessed June 16, 2018).

  10. B. Shah, D. Khunt, H. Bhatt, et al., Eur. J. Pharm. Sci.78, 54 – 66 (2015).

    Article  CAS  Google Scholar 

  11. I. M. Savic, V. D. Marinkovic, L. Tasic, et al., Accred. Qual. Assur.,17, 627 – 33 (2012).

    Article  Google Scholar 

  12. ICH Q8 (R2) Pharmaceutical Development, Guidelines (2009). Available at: https: // www.ich.org/fileadmin/Public_Web_Site/ICH Products/Guidelines/Quality/Q8 R1/Step4/Q8_R2_Guideline. pdf (Accessed July 8, 2018).

  13. L. Zhang and S. Mao, Asian J. Pharm. Sci.,12, 1 – 8 (2017).

    Article  Google Scholar 

  14. H. Guo and A. Mettas, Design of Experiments and Data Analysis, in Proceedings of Reliability and Maintainability Symposium (San Jose, CA, USA, 2010). Available at: https: //www.scribd.com/document/261112587/2010-RAMS-Doeand-Data-Analysis (Accessed July 11, 2018).

  15. E. Marlowe, R. F. Shangraw, J. Pharm. Sci., 56, 498 – 504 (1967).

    Article  CAS  Google Scholar 

  16. D. Granato and V. M. de Araújo Calado, The use and importance of design of experiments (DoE) in process modelling in food science and technology, in: Mathematical and Statistical Methods in Food Science and Technology (D. Granato, ed.), John Wiley & Sons, Inc., New York (2013), pp. 1 – 18.

  17. S. Fontdecaba, P. Grima, and X. Tort-Martorell, The Am. Statistic,.68, 205 – 211 (2014).

    Article  Google Scholar 

  18. R. R. Jivani, C. N. Patel, and N. P. Jivani, Indian J. Pharm. Sci.,74, 302 – 311 (2012).

    Article  CAS  Google Scholar 

  19. N. A. Charoo, A. A. Shamsher, A. S. Zidan, et al., Int. J. Pharm.,423, 167 – 78 (2012).

    Article  CAS  Google Scholar 

  20. M. Naeem, N. U. R. Rahman, J. A. Khan, et al., Lat. Am. J. Pharm.,32, 1196 – 1204 (2013).

    CAS  Google Scholar 

  21. N. Patel, S. Jain, P. Madan, et al., Drug Develop. Ind. Pharm.,42, 1894 – 1902 (2016).

    Article  CAS  Google Scholar 

  22. M. A. Badawi and L. K. El-Khordagui, Eur. J. Pharm. Sci.,58, 44 – 54 (2014).

    Article  CAS  Google Scholar 

  23. J. Kushner, B. A. Langdon, I. Hicks, et al., J. Pharm. Sci.,103, 527 – 538 (2013).

    Article  Google Scholar 

  24. P. M. Kumar and A. Ghosh, Eur. J. Pharm. Sci.,96, 243 – 254 (2017).

    Article  CAS  Google Scholar 

  25. E. Sánchez-López, M. A. Egea, A. Cano, et al., Colloid Surf. Biointerfaces, 145, 241 – 250 (2016).

    Article  Google Scholar 

  26. L. Kumar, M. S. Reddy, R. S. Managuli, et al., Saudi Pharm. J.,23, 549 – 555 (2015).

    Article  Google Scholar 

  27. N. S. K. Srinivas, R. Verma, G. P. Kulyadi, et al., Int. J. Nanomed.,12, 15 – 28 (2017).

    Article  CAS  Google Scholar 

  28. G. N. Ferreira, M. G. R. Silva, A. G. M. Fraga, et al., Braz. J. Pharm. Sci.,50, 291 – 300 (2014).

    Article  CAS  Google Scholar 

  29. P. Panzade, G. Shendarkar, S. Shaikh, et al., Adv. Pharm. Bull.,7, 399 – 408 (2017).

    Article  CAS  Google Scholar 

  30. E. Maretti, C. Rustichelli, M. Romagnoli, et al., Int. J. Pharm.,511, 669 – 679 (2016).

    Article  CAS  Google Scholar 

  31. M. H. Shariare, M. de Matas, P. York, et al., Int. J. Pharm.,408, 58 – 66 (2011).

    Article  CAS  Google Scholar 

  32. M. Malladi and R. Jukanti. J. Drug Deliver. Sci. Technol.,35, 134 – 145 (2016).

    Article  CAS  Google Scholar 

  33. M. S. Reddy, L Kumar, Z. Attari, et al., Indian J. Pharm. Sci.,79, 16 – 28 (2017).

    Google Scholar 

  34. P. F. Chavez, P. Lebrun, P. Y. Sacréet, et al., Int. J. Pharm.,486(1 – 2), 13 –20 (2015).

    Article  CAS  Google Scholar 

  35. S. I. Badawy, A. S. Narang, K. R. LaMarche, et al., J. Pharm. Sci.,105(1), 168 – 81 (2016).

    Article  CAS  Google Scholar 

  36. T. Tol, N. Kadam, N. Raotole, et al., J. Chromatogr., 1432, 26 – 38 (2016).

    Article  CAS  Google Scholar 

  37. B. Gu and D. J. Burgess, Int. J. Pharm.,495(1), 393 – 403 (2015).

    Article  CAS  Google Scholar 

  38. A. Al-Gheethi, E. Noman, R. M. S. Radin Mohamed, et al. J. Hazard. Mater., 365, 883 – 894 (2019).

    Article  CAS  Google Scholar 

  39. M. Sakr, R. Hanafi, M. Fouad, et al. Spectrochim. Acta Mol. Biomol. Spectrosc., 208, 114 – 123 (2019).

    Article  CAS  Google Scholar 

  40. A. Nair, D. Khunt, and M. Misra. Powder Technol., 342, 156 – 65 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhoot, A.S., Fernandes, G.J., Naha, A. et al. Design of Experiments in Pharmaceutical Development. Pharm Chem J 53, 730–735 (2019). https://doi.org/10.1007/s11094-019-02070-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-019-02070-4

Keywords

Navigation