Advertisement

Pharmaceutical Chemistry Journal

, Volume 53, Issue 5, pp 472–476 | Cite as

In Vitro Effect of Flow Velocity on Aerodynamic Parameters of a Cromospir Metered Dose Inhaler

  • M. V. Nezdol’eva
  • R. R. Suleimanov
  • O. A. Popova
  • S. G. Larionova
  • O. A. Pobedin
  • L. A. TrukhachevaEmail author
Article
  • 13 Downloads

The effect of changing flow velocity on the aerodynamic particle size distribution of Cromospir metered dose inhaler (MDI) was studied using an Andersen cascade impactor (ACI) in the standard configuration designed for sampling at flow velocity 28.3 L/min and in a modified configuration at 60 L/min. The aerodynamic particle size distribution and the respirable fraction of the aerosol changed if the flow velocity of air passing through the impactor changed. Studies of the aerodynamic properties of aerosols with patient inhalation modeled at various air flow rates are recommended during quality assessment method development for aerosols and for in vitro comparisons of MDI efficiencies.

Keywords

cromoglicate metered dose inhalers aerodynamic fine particle size distribution Andersen cascade impactor respirable fraction 

Notes

Acknowledgments

The work was performed in the framework of State Task to SCEEMP, Ministry of Health of Russia, No. 056-00023-18-02 for applied scientific research (State Acct. No. NIR AAAA-A18-118021590049-0).

References

  1. 1.
    P. B. Myrdal, P. Sheth, and S. W. Stein, “Formulation development,” AAPS PharmSciTech, 15(2), 434 – 455 (2014).CrossRefGoogle Scholar
  2. 2.
    B. Scarlett, Am. Pharm. Rev., 5, 93 – 101 (2003).Google Scholar
  3. 3.
    A. Kamiya, M. Sakagami, M. Hindle, and P. Byron, J. Pharm. Sci., 93(7), 1828 – 1837 (2004).CrossRefGoogle Scholar
  4. 4.
    State Pharmacopoeia of the RF, XIIIth Ed., Vols. 1 – 3, Moscow, 2015; http://femb.ru
  5. 5.
    European Pharmacopoeia, EDQM, 9th Ed.; http://online.edqm.eu/entry.htm
  6. 6.
    United States Pharmacopeia, 39th Ed., United States Pharmacopeial Convention; http://www.uspnf.com/uspnf/
  7. 7.
    O. A. Pobedin, L. A. Trukhacheva, and E. B. Nechaeva, Vedom. Nauchn. Tsentra Ekspert. Sredstv Med. Primeneniya, 2, 20 – 26 (2014).Google Scholar
  8. 8.
    M. Y. Yang, J. Verschuer, Y. Shi, et al., Int. J. Pharm., 513(1 – 2), 294 – 301 (2016).CrossRefGoogle Scholar
  9. 9.
    D. L. Ross and R. K. Schultz, J. Aerosol Med., 9(2), 215 – 226 (1996).CrossRefGoogle Scholar
  10. 10.
    D. A. Lewis, H. O’Shea, T. K. Church, G. Brambilla, et al., Int. J. Pharm., 514(2), 420 – 427 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Weda, E. Geuns, R. Vermeer, et al., Eur. J. Pharm. Biopharm., 49, 295 – 302 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. V. Nezdol’eva
    • 1
  • R. R. Suleimanov
    • 1
  • O. A. Popova
    • 1
  • S. G. Larionova
    • 1
  • O. A. Pobedin
    • 1
  • L. A. Trukhacheva
    • 1
    Email author
  1. 1.Scientific Center for Expert Evaluation of Medicinal ProductsMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations