Skip to main content

Conjugates of Prostate-Specific Membrane Antigen Ligands with Antitumor Drugs

Conjugates for targeted delivery that are based on low-molecular-mass prostate specific membrane antigen (PSMA) inhibitors are widely used and developed because of the deficiencies of existing methods for treating and diagnosing prostate cancer. The major classes of low-molecular-mass PSMA inhibitors, drug classes, and their mechanisms of action are discussed. Therapeutic conjugates for targeted delivery that are based on them are analyzed. Structural features of the linker that affect the biological activity and selectivity are identified.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

References

  1. Cancer Facts & Figures, American Cancer Society, Inc., No. 500817, 2017.

  2. M. J. Barry, “Clinical practice,” N. Engl. J. Med., 344(18), 1373 – 1377 (2001); DOI: https://doi.org/10.1056/NEJM200105033441806.

  3. B. S. Slusher, Handbook of Proteolytic Enzymes, Vol. 2, pp. 1620 – 1627, 2013; DOI https://doi.org/10.1016/j.bmc.2018.11.022.

  4. V. P. Chekhonin, M. E. Grigor’ev, and Yu. A. Zharkov, Vopr. Med. Khim., 48, 31 – 72 (2002); PubMed: 12068496.

  5. L. S. Grauer, K. D. Lawler, and J. Marignac, Cancer Res., 58(21), 4787 – 4789 (1998); PMID: 98009977; DOI: Published November 1998.

  6. A. Ghosh and W. D. W. Heston, J. Cell. Biochem., 91(3), 528 – 539 (2004); DOI: https://doi.org/10.1002/jcb.10661.

    Article  CAS  PubMed  Google Scholar 

  7. A. E. Machulkin, Y. A. Ivanenkov, A. V. Aladinskaya, et al., J. Drug Targeting, 24(8), 679 – 693 (2016); DOI: https://doi.org/10.3109/1061186X.2016.1154564.

    Article  CAS  Google Scholar 

  8. N. Subasinghe, M. Schulte, M. Y.-M. Chan, et al., J. Med. Chem., 33(10), 2734 – 2744 (1990); DOI: https://doi.org/10.1021/jm00172a009.

    Article  CAS  PubMed  Google Scholar 

  9. P. F. Jackson, D. C. Cole, B. S. Slusher, et al., J. Med. Chem., 39, 619 – 622 (1996); DOI: https://doi.org/10.1021/jm950801q.

    Article  CAS  PubMed  Google Scholar 

  10. C. Barinka, C. Rojas, and B. Slusher, Curr. Med. Chem., 19, 856 – 870 (2012); DOI: https://doi.org/10.2174/092986712799034888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. P. Kozikowski, F. Nan, P. Conti, et al., J. Med. Chem., 44(3), 298 – 301 (2001); DOI: https://doi.org/10.1021/jm000406m.

    Article  CAS  PubMed  Google Scholar 

  12. S. A. Kularatne, Z. Zhou, J. Yang, et al., Mol. Pharmaceutics, 6(3), 790 – 800 (2009); DOI: https://doi.org/10.1021/mp9000712.

    Article  CAS  Google Scholar 

  13. K. P. Maresca, S. M. Hillier, F. J. Femia, et al., J. Med. Chem., 52, 347 – 357 (2009); DOI: https://doi.org/10.1021/jm800994j.

    Article  CAS  PubMed  Google Scholar 

  14. J. Tykvart, J. Schimer, J. Barinkova, et al., Bioorg. Med. Chem., 22, 4099 – 4108 (2014); DOI: https://doi.org/10.1016/j.bmc.2014.05.061.

    Article  CAS  PubMed  Google Scholar 

  15. T. H. Pillow, J. D. Sadowsky, D. Zhang, et al., Chem. Sci., 8, 366 – 370 (2017); DOI: https://doi.org/10.1039/C6SC01831A.

    Article  CAS  PubMed  Google Scholar 

  16. T. C. Johnstone, K. Suntharalingam, S. J. Lippard, et al., Chem. Rev., 116, 3436 – 3486 (2016); DOI: https://doi.org/10.1021/acs.chemrev.5b00597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. U. Basu, B. Banik, R. Wen, et al., Dalton Trans., 45, 12992 – 13004 (2016); DOI: https://doi.org/10.1039/C6DT01738J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E. Borre, G. Dahm, G. Guichard, et al., New J. Chem., 40, 3164 – 3171 (2016); DOI: https://doi.org/10.1039/C5NJ03104D.

    Article  CAS  Google Scholar 

  19. F. M. Veronese, O. Schiavon, G. Pasut, et al., Bioconjugate Chem., 16, 775 – 784 (2005); DOI: https://doi.org/10.1021/bc040241m.

    Article  CAS  Google Scholar 

  20. O. V. Zhukova, T. F. Sergeeva, and A. I. Gavrina, Khim.-farm. Zh., 52(6), 38 – 43 (2018); Pharm. Chem. J., 52(6), 539 – 544 (2018); DOI: https://doi.org/10.30906/0023-1134-2018-52-6-38-43.

  21. L. Wong, M. Kavallarisc, V. Bulmus, et al., Polym. Chem., 2, 385 – 393 (2011); DOI: https://doi.org/10.1039/C0PY00256A.

    Article  CAS  Google Scholar 

  22. T. Jiang, Y. M. Li, and Y. Lv, Colloids Surf., B, 111, 542 – 548 (2013); DOI: https://doi.org/10.1016/j.colsurfb.2013.06.054.

    Article  CAS  Google Scholar 

  23. B. M. Mueller, W. A. Wrasidlo, R. A. Reisfeld, et al., Bioconjugate Chem., 7, 325 – 330 (1990); DOI: https://doi.org/10.1021/bc00005a005.

    Article  Google Scholar 

  24. S. Jayaprakash, X. Wang, W. D. Heston, et al., ChemMed-Chem., 1, 299 – 302 (2006); DOI: https://doi.org/10.1002/cmdc.200500044.

    Article  CAS  Google Scholar 

  25. G. M. Dubowchik, R. A. Firestone, L. Padilla, et al., Bioconjugate Chem., 13, 855 – 869 (2002); DOI: https://doi.org/10.1021/bc025536j.

    Article  CAS  Google Scholar 

  26. G. R. Pettit, S. B. Singh, J. K. Srirangam, et al., J. Org. Chem., 59, 1796 – 1800 (1994); DOI: https://doi.org/10.1021/jo00086a034.

    Article  CAS  Google Scholar 

  27. S. O. Doronina, B. E. Toki, M. Y. Torgov, et al., Nat. Biotechnol., 21(7), 778 – 784 (2003); DOI: https://doi.org/10.1038/nbt832.

    Article  CAS  PubMed  Google Scholar 

  28. V. A. DiPippo, H. M. Nguyen, L. G. Brown, et al., Wiley Online Library, 76(3), 325 – 334 (2016); DOI: https://doi.org/10.1002/pros.23124.

    Article  CAS  Google Scholar 

  29. I. Ojima, O. Duclos, M. Zucco, et al., J. Med. Chem., 37, 2602 – 2608 (1994); DOI: https://doi.org/10.1021/jm00042a013.

    Article  CAS  PubMed  Google Scholar 

  30. N. M. Bhatia, P. K. Kulkarni, S. S. Ashtekar, et al., Pharm. Chem. J., 51(11), 1005 – 1013 (2018); DOI: https://doi.org/10.1007/s11094018-1730-8.

    Article  CAS  Google Scholar 

  31. H. Kim, Y. Lee, I. H. Lee, et al., J. Controlled Release, 178, 118 – 124 (2014); DOI: https://doi.org/10.1016/j.jconrel.2014.01.015.

    Article  CAS  Google Scholar 

  32. Z. H. Peng, M. Sima, M. E. Salama, et al., J. Drug Targeting, 21(10), 968 – 980 (2013); DOI: https://doi.org/10.3109/1061186X.2013.833207.

    Article  CAS  Google Scholar 

  33. S. A. Kularatne, C. Venkatesh, H. K. R. Santhapuram, et al., J. Med. Chem., 53, 7767 – 7777 (2010); DOI: https://doi.org/10.1021/jm100729b.

    Article  CAS  PubMed  Google Scholar 

  34. M. J. Morris, N. J. Vogelzang, O. Saltor, et al., J. Clin. Oncol., 35(15), 5038 – 5038 (2017); DOI: https://doi.org/10.1200/JCO.2017.35.15suppl.5038.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Uspenskaya.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 53, No. 4, pp. 10 – 19, April, 2019.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspenskaya, A.A., Machulkin, A.É., Mazhuga, A.G. et al. Conjugates of Prostate-Specific Membrane Antigen Ligands with Antitumor Drugs. Pharm Chem J 53, 288–297 (2019). https://doi.org/10.1007/s11094-019-01994-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-019-01994-1

Keywords