Skip to main content

Release Testing of Selected Drugs from Surface Magnetic Nanoparticles and Their Diffusion Through a Membrane

In this study, magnetic nanoparticles were functionalized with dextran and immobilized ibuprofen, diclofenac, and dopamine in order to investigate the diffusion of drugs through a dialysis membrane under biological conditions such as a temperature of 37.0°C and pH 7.4. The concentration of released drugs was measured both inside the membrane and upon release into solution using spectrofluorimetric and spectrophotometric methods. The mechanism of drug release from the carrier was analyzed in terms of the Korsmeyer – Peppas model. The results show that differences in the mechanism of drug release depend on the time-diffusion process and the type of drug used. In addition, the atomic force microscopy and confocal microscopy methods were used to investigate the interaction between bacterial cells and functionalized nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. H. Hillaireau and P. Couvreur, Cell Mol. Life Sci., 66(17), 2873 – 2896 (2009).

    Article  PubMed  CAS  Google Scholar 

  2. S. Parveen, R. Misra, and S. K. Sahoo, Nanomedicine, 8(2),147 – 166 (2012).

    Article  PubMed  CAS  Google Scholar 

  3. T. K. Jain, M. K. Reddy, M. A. Morales, et al., Mol. Pharm., 5, 316 – 327 (2008).

    Article  PubMed  CAS  Google Scholar 

  4. G. Oberdorster, J. Intern. Med., 267, 89 – 105 (2010).

    Article  PubMed  CAS  Google Scholar 

  5. H. S. Kim, Y. Choi, I. C. Song, et al., NMR Biomed., 22, 852 – 856 (2009).

    Article  PubMed  CAS  Google Scholar 

  6. A. Elias and A. Tsourkas, Hematol. Am. Soc. Hematol. Educ. Progr., 720 – 726 (2009).

  7. L. C. Gomes-da-Silva, Y. Fernández, I. Abasolo, et al., Nanomedicine, 8(9), 1397 – 1413 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. J. Xie, J. Wang, G. Niu, et al., Chem. Commun., 46, 433 – 435 (2010).

    Article  CAS  Google Scholar 

  9. S. J. Soenen, N. Nuytten, S. F. De Meyer, et al., Small, 6, 832 – 842 (2010).

    Article  PubMed  CAS  Google Scholar 

  10. G. J. Owens, R. K. Singh, F. Foroutan, et.al., Progr. Mater. Sci., 77, 1 – 79 (2016).

    Article  CAS  Google Scholar 

  11. K. Murugan, Y. E. Choonara, P. Kumar, et al., Int. J. Nanomed., 10, 2191 – 2206 (2015).

    CAS  Google Scholar 

  12. Z. Wang, C. Tiruppathi, R. D. Minshall, et al., ACS Nano, 3(12), 4110 – 4116 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. M. Lundqvist, J. Stigler, G. Elia, et al., Proc. Natl. Acad. Sci. USA, 105, 14265 – 14270 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. H. L. Karlsson, J. Gustafsson, P. Cronholm, et al., Toxicol. Lett., 188, 112 – 118 (2009.

    Article  PubMed  CAS  Google Scholar 

  15. W. L. Langston Suen and Y. Chau, J. Pharm. Pharmacol., 66(4), 564 – 573 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. A. Kunzmann, B. Andersson, T. Thurnherr, et al., Biophys. Acta,; 1810(3), 361 – 373 (2011).

    Article  CAS  Google Scholar 

  17. A. Kumari, S. K. Yadav, and S. C. Yadav, Colloids Surf. B: Biointerfaces, 75(1), 1 – 18 (2010).

    Article  PubMed  CAS  Google Scholar 

  18. S. Naahidi, M. Jafari, F. Edalat, et al., J Control. Release, 166(2), 182 – 194 (2012).

    Article  PubMed  CAS  Google Scholar 

  19. S. M. Moghimi, A. C. Hunter, and T. L. Andresen, Annu. Rev. Pharmacol. Toxicol., 52, 481 – 503 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. S. Sabella, R. P. Carney, V. Brunetti, et. al., Nanoscale, 6, 7052 – 7061 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. P. Aggarwal, J. B. Hall, C. B. McLeland, et al., Adv. Drug Delivery Rev., 61, 428 – 437 (2009).

    Article  CAS  Google Scholar 

  22. W. Jiang, Y. S. KimBetty, J. T. Rutka, et al., Nat. Nanotechnol., 3, 145 – 150 (2008).

    Article  PubMed  CAS  Google Scholar 

  23. E. Gronczewska, A. Defort, and J. J. Kozioł, Pharm. Chem. J., 50(6), 491 – 499 (2016).

    Article  CAS  Google Scholar 

  24. P. L. Ritger and N. A. Peppas, J. Control. Release, 5, 37 – 42 (1987).

    Article  CAS  Google Scholar 

  25. X. Huang and C. S. Brazel, J. Control. Release, 73, 121 – 136 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. I. Miyazaki and M. Asanuma, Acta Medica Okayama, 62(3), 141 – 150 (2008).

    PubMed  CAS  Google Scholar 

  27. P. Rao and E. E. Knaus, J. Pharm. Pharm. Sci., 11(2), 81 – 110 (2008).

    Article  Google Scholar 

  28. X. Du, L. Li, J. Li, et al., Adv. Mater., 26(47), 8029 – 8033 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. W. Sheng, B. Li, X. Wang, et.al., Chem. Sci., 6, 2068 – 2073 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. S. A. Lewin and R. S. Wagner, J.. Chem. Educ., 30, 445 (1953).

    Article  CAS  Google Scholar 

  31. A. A. AL-Janabi, J Glob. Infect. Dis., 2(2), 105 – 108 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. A. Ljungh and T. Wadström, Curr. Issues Intest. Microbiol., 7(2), 73 – 89 (2006).

    PubMed  CAS  Google Scholar 

  33. R. Lehner, X. Wang, S. Marsch, et al., Nanomedicine, 9, 742 – 757 (2013).

    Article  PubMed  CAS  Google Scholar 

  34. G. Sahay, D. Y. Alakhova, and A. V. Kabanov, J. Control. Release, 145, 182 – 195 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. S. Naahidi, M. Jafari, F. Edalat, et al., J. Control. Release, 166, 182 – 194 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. B. Zapotoczny for fruitful discussion of suggestions concerning drug release investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina Gronczewska.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gronczewska, E., Worobiec, W., Defort, A. et al. Release Testing of Selected Drugs from Surface Magnetic Nanoparticles and Their Diffusion Through a Membrane. Pharm Chem J 52, 257–265 (2018). https://doi.org/10.1007/s11094-018-1803-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1803-8

Keywords

  • magnetic nanoparticles
  • drug release
  • diffusion
  • membrane
  • nonsteroidal anti-inflammatory drugs
  • NSAIDs, dopamine, Korsmeyer – Peppas model, Lactobacillus bacteria