Pharmaceutical Chemistry Journal

, Volume 52, Issue 3, pp 236–240 | Cite as

Solubility and Stability of Proroxan at Various PH Values

  • S. P. Krechetov
  • G. O. Nifontova
  • O. V. Dolotova
  • M. S. Veselov
Article
  • 13 Downloads

The solubility and stability of the nonselective α-adrenoblocker 1-(2,3-dihydro-1,4-benzdioxin-6-yl)-3-(3-phenyl-1-pyrrolidinyl)-1-propanone hydrochloride (proroxan) at various pH values were investigated. It was established that proroxan solubility was reduced for 3 < pH < 5.5, which corresponded to the protonated species; was uncharacteristic for salts of organic bases; and increased its destruction. It was suggested that this peculiarity of proroxan behavior in aqueous solutions could reflect complexation between its protonated and unprotonated molecules. The results indicated that proroxan preparations using dosage forms and delivery systems that provide its maximum absorption in the stomach must be developed.

Keywords

proroxan solubility stability pH 

Notes

Acknowledgments

The work was financially supported by the RF Ministry of Education and Science (Contract No. 02.G25.31.0001) under RF Government Decree No. 218 dated Apr. 9, 2010.

References

  1. 1.
    M. Li, S. Sander, J. Duan, et al., AAPS J., 18(6), 1406 – 1417 (2016).CrossRefPubMedGoogle Scholar
  2. 2.
    M. Kuentz, R. Holm, and D. P. Elder, Eur. J. Pharm. Sci., 87, 136 – 163 (2016).CrossRefPubMedGoogle Scholar
  3. 3.
    S. S. Krylov and N. T. Starykh, Farmakol. Toksikol., 36(4), 396 – 399 (1973).Google Scholar
  4. 4.
    M. D. Gaevyi and V. E. Pogorelyi, Byull. Eksp. Biol. Med., 96(7), 56 – 59 (1983).Google Scholar
  5. 5.
    A. G. Sofronov, Psikhofarmakol. Biol. Narkol., 7(4), 1962 (2009).Google Scholar
  6. 6.
    P. D. Shabanov and A. G. Anokhin, Eksp. Klin. Farmakol., 68(3), 50 – 55 (2005).PubMedGoogle Scholar
  7. 7.
    S. A. Ivanova, S. S. Krylov, and A. N. Petrov, Byull. Eksp. Biol. Med., No. 12, 1453 – 1455 (1976).Google Scholar
  8. 8.
    A. T. M. Serajuddin, Adv. Drug Deliv. Rev., 59(7), 603 – 616 (2007).CrossRefPubMedGoogle Scholar
  9. 9.
    A. Glomme, J. Marz, and J. B. Dressman, J. Pharm. Sci., 94(1), 1 – 16 (2005).CrossRefPubMedGoogle Scholar
  10. 10.
    S. F. Kramer and G. L. Flynn, J. Pharm. Sci., 61(12), 1896 – 1904 (1972).CrossRefPubMedGoogle Scholar
  11. 11.
    S. Li, S. M. Wong, S. Sethia, et al., Pharm. Res., 22(4), 628 – 635 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    D. Harvey, Modern Analytical Chemistry, McGraw-Hill, New York (2000).Google Scholar
  13. 13.
    M. Tramontini and L. Angiolini, Tetrahedron, 46(6), 1791 – 1837 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. P. Krechetov
    • 1
  • G. O. Nifontova
    • 1
  • O. V. Dolotova
    • 1
  • M. S. Veselov
    • 1
  1. 1.Department of Biological and Medical PhysicsMoscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations