Skip to main content

Anisotropic Iron-Oxide Nanoparticles for Diagnostic MRI: Synthesis and Contrast Properties

The scientific and technical literature addressing the synthesis of anisotropic iron-oxide nanoparticles of various shapes (cubic, rod-like, clustered, etc.) sized from 10 to 100 nm and their application for diagnostic magnetic resonance imaging (MRI) of tissues and organs is analyzed. The analysis indicates that the nanoparticle shape, size, and surface chemistry affect considerably relaxation parameters T1 and T2. Thus, cubic iron-oxide nanoparticles had the greatest T2 values. Furthermore, rod-like and octapodal nanoparticles also exhibit rather high T2 values so that they can be used as contrast agents for diagnostic MRI.

This is a preview of subscription content, access via your institution.

References

  1. U. Jeong, X. W. Teng, Y. Wang, et al., Adv. Mater., 19, 33 – 60 (2007).

    Article  CAS  Google Scholar 

  2. C. J. Xu and S. H. Sun, Polym. Int., 56, 821 – 826 (2007).

    Article  CAS  Google Scholar 

  3. A. K. Gupta and M. Gupta, Biomaterials, 26, 3995 – 4021 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. A.-H. Lu, E. L. Salabas, and F. Schuth, Angew. Chem., Int. Ed., 46, 1222 – 1244 (2007).

    Article  CAS  Google Scholar 

  5. M. Chen, J. Kim, J. P. Liu, et al., J. Am. Chem. Soc., 128, 7132 – 7133 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. J. T. Jang, H. Nah, J. H. Lee, et al., Angew. Chem., Int. Ed., 48(7), 1234 – 1238 (2009).

    Article  CAS  Google Scholar 

  7. N. Lee and T. Hyeon, Chem. Soc. Rev., 41, 2575 – 2589 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. B. E. Kashevsky, S. B. Kashevsky, V. S. Korenkov, et al., J. Magn. Magn. Mater., 380, 335 – 340 (2015).

    Article  CAS  Google Scholar 

  9. A. Y. Louie, M. M. Huber, E. T. Ahrens, et al., Nat. Biotechnol., 18, 321 – 325 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. S. R. Saptarshi, A. Duschl, A. L. Lopata, et al., J. Nanobiotechnol., 11, 26 (2013).

    Article  CAS  Google Scholar 

  11. N. V. Pul’kova, S. A. Tonevitskaya, V. M. Gerasimov, et al., Nanotechnol. Russ., 10, 570 – 575 (2015).

    Article  CAS  Google Scholar 

  12. A. Bandhu, S. Sutradhar, S. Mukherjee, et al., Mater. Res. Bull., 70, 145 – 154 (2015).

    Article  CAS  Google Scholar 

  13. Y. Koseoolu, Ceram. Int., 41, 11655 – 11661 (2015).

    Article  CAS  Google Scholar 

  14. S. Phumying, S. Labuayai, E. Swatsitang, et al., Mater. Res. Bull., 48(6), 2060 – 2065 (2013).

    Article  CAS  Google Scholar 

  15. S. Sun and H. Zeng, J. Am. Chem. Soc., 124, 8204 – 8205 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. J. W. Cheon, N. J. Kang, S. M. Lee, et al., J. Am. Chem. Soc., 126, 1950 – 1951 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. A. Shavel, B. Rodriguez-Gonzalez, J. Pacifico, et al., Chem. Mater., 21, 1326 – 1332 (2009).

    Article  CAS  Google Scholar 

  18. C. J. Jia, L. D. Sun, F. Luo, et al., J. Am. Chem. Soc., 130, 16968 – 16977 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. D. Kim, N. Lee, M. Park, et al., J. Am. Chem. Soc., 131, 454 – 455 (2009).

    Article  PubMed  CAS  Google Scholar 

  20. L. Li, W. Jiang, K. Luo, et al., Theranostics, 3(8), (2013).

  21. S. Laurent, D. Forge, and M. Port, Chem. Rev., 108, 2064 – 2110 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. W. Wu, Q. He, and C. Jiang, Nanoscale Res. Lett., 3(11), 397 – 415 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. N. Lee, Y. Choi, Y. Lee, et al., Nano Lett., 12, 3127 – 3131 (2012).

    Article  PubMed  CAS  Google Scholar 

  24. V. K. Sharma, A. Alipour, Z. Soran-Erdem, et al., Nanoscale, 7(23), 10519 – 10526 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. N. Lee, H. Kim, S. H. Choi, et al., Proc. Natl. Acad. Sci. USA, 108(7), 2662 – 2667 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Z. Zhou, X. Zhu, D. Wu, et al., Chem. Mater., 27(9), 3505 – 3515 (2015).

    Article  CAS  Google Scholar 

  27. L.-P. Hwang and J. H. Freed, J. Chem. Phys., 63, 4017 (1975).

    Article  CAS  Google Scholar 

  28. J. Mohapatra, A. Mitra, H. Tyagi, et al., Nanoscale, 7, 9174 – 9184 (2015).

    Article  PubMed  CAS  Google Scholar 

  29. Z. Zhao, Z. Zhou, J. Bao, et al., Nat. Commun., 4, 2266 (2013).

    Article  PubMed  CAS  Google Scholar 

  30. M. Ravichandran, S. Velumani, and J. T. Ramirez, Biomed. Phys. Eng. Express, 3, 1 – 10 (2017).

    Article  Google Scholar 

  31. M. Cho, A. Cervadoro, M. R. Ramirez, et al., Nanomaterials, 7(4), 72 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  32. S. Laurent, J.-L. Bridot, L. Vander Elst, et al., Future Med. Chem., 2(3), 427 – 449 (2010).

    Article  PubMed  CAS  Google Scholar 

  33. S. Lefebure, E. Dubois, V. Cabuil, S. Neveu, and R. Massart, J. Mater. Res., 13, 2975 (1998).

    Article  CAS  Google Scholar 

  34. J. C. Bacri, R. Perzynski, and D. Salin, J. Magn. Magn. Mater., 85, 27 (1990).

    Article  CAS  Google Scholar 

  35. M. Taupitz, S.Wagner, J. Schnorr, et al., Invest. Radiol., 39, 394 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. C. Yee, G. Kataby, G. Ulman, et al., Langmuir, 15, 7111 (1999).

    Article  CAS  Google Scholar 

  37. M. D. Shultz, J. U. Reveles, S. N. Khanna, et al., J. Am. Chem. Soc., 129(9), 2482 – 2487 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, et al., Handbook of Magnetic Materials, Elsevier, Amsterdam (2006), p. 403.

    Google Scholar 

  39. H. W. Kang, L. Josephson, A. Petrovsky, et al., Bioconjugate Chem., 13, 122 (2002).

    Article  CAS  Google Scholar 

  40. D. K. Kim, M. Mikhaylova, F. H. Wang, et al., Chem. Mater., 15, 4343 (2003).

    Article  CAS  Google Scholar 

  41. M. Iijima, Y. Yonemochi, M. Tsukada, et al., J. Colloid Interface Sci., 298, 202 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. G. D. Mendenhall, Y. Geng, and J. Hwang, J. Colloid Interface Sci., 184, 519 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. K. Wormuth, J. Colloid Interface Sci., 241, 366 (2001).

    Article  CAS  Google Scholar 

  44. H.-L. Liu, S. P. Ko, and J.-H. Wu, J. Magn. Magn. Mater., 310, 815 (2006).

    Article  CAS  Google Scholar 

  45. J. L. Arias, V. Gallardo, S. A. Gomez-Lopera, et al., J. Biomed. Nanotechnol., 1, 214 (2005).

    Article  CAS  Google Scholar 

  46. S. A. Gomez-Lopera, J. L. Arias, V. Gallardo, et al., Langmuir, 22, 2816 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. J. L. Arias, M. Lopez-Viota, M. A. Ruiz, et al., Int. J. Pharm., 339, 237 (2007).

    Article  PubMed  CAS  Google Scholar 

  48. C. Flesch, C. Delaite, P. Dumas, et al., J. Polym. Sci., Part A: Polym. Chem., 42, 6011 – 6020 (2004).

    Article  CAS  Google Scholar 

  49. A. Semkina, M. Abakumov, and N. Grinenko, Colloids Surf., B, 136, 1073 – 1080 (2015).

    Article  CAS  Google Scholar 

  50. S. Tong, S. Hou, Z. Zheng, et al., Nano Lett., 10, 4607 – 4613 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Y. C. Park, J. B. Smith, T. Pham, et al., Colloids Surf., B, 119, 106 – 114 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Ministry of Education and Science of the Russian Federation [14.578.21.0201, RFMEFI57816X0201].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nikitin.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 52, No. 4, pp. 36 – 40, April, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikitin, A.A., Khramtsov, M.A., Savchenko, A.G. et al. Anisotropic Iron-Oxide Nanoparticles for Diagnostic MRI: Synthesis and Contrast Properties. Pharm Chem J 52, 231–235 (2018). https://doi.org/10.1007/s11094-018-1796-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1796-3

Keywords

  • nanoparticles
  • iron-oxide nanoparticles
  • magnetite
  • magnetic resonance imaging
  • MRI
  • contrast agents