Encapsulation and Controlled Release of Vitamin B2 Using Peracetyl-β-Cyclodextrin Polymer-Based Electrospun Nanofiber Scaffold

  • Abolfazl Heydari
  • Fatemeh Mehrabi
  • Tayebeh Shamspur
  • Hassan Sheibani
  • Ali Mostafavi
Article

Hydrophobic β-cyclodextrin polymer nanofibers were obtained by the electrospinning of peracetyl-β-cyclodextrin polymer (AcβCDP) from acetone : DMF (3 : 2 v/v) solution. The morphology of AcβCDP nanofibers was studied by scanning electron microscopy. The proposed novel hydrophobic β-CD polymer was synthesized through reaction of water-soluble β-CD polymer crosslinked with epichlorohydrin (β-CD-ECH polymer) and acetic anhydride in the presence of pyridine. The peracylation of β-CD-ECH polymer is verified by FT-IR and solubility data. The final part of this study is focused on incorporating vitamin B2 (VB2) into the AcβCDP nanofiber. In vitro release of VB2 from AcβCDP/VB2 nanofiber in model physiological media was investigated; the results exhibited initial burst and then slow drug release. The release of VB2 from AcβCDP/VB2 nanofiber is slower than from AcβCDP/VB2.

Keywords

nanofiber peracylated β-cyclodextrin polymer electrospinning vitamin B2 controlled release 

Notes

Acknowledgements

The authors express appreciation to the Shahid Bahonar University of the Kerman Faculty Research Committee and the Young Researchers and Elite Club of Islamic Azad University Kerman Branch for their support to this study.

References

  1. 1.
    H. Namazi and A. Heydari, Polym. Int., 63, 1447 – 1455 (2014).CrossRefGoogle Scholar
  2. 2.
    A. Heydari, M. Iranmanesh, F. Doostan, et al., Pharm. Chem. J., 49, 605 – 612 (2015).CrossRefGoogle Scholar
  3. 3.
    A. Heydari, F. Doostan, H. Khoshnood, et al., RSC Adv., 6, 33267 – 33278 (2016).CrossRefGoogle Scholar
  4. 4.
    R. L. Abarca, F. J. Rodriguez, A. Guarda, et al., Food Chem., 196, 968 – 975 (2016).CrossRefPubMedGoogle Scholar
  5. 5.
    Z. Xiong, H. Lin, F. Liu, et al., J. Membrane Sci., 513, 166 – 176 (2016).CrossRefGoogle Scholar
  6. 6.
    M. E. Davis and M. E. Brewster, Nat. Rev. Drug Discov., 3, 1023 – 1035 (2004).CrossRefPubMedGoogle Scholar
  7. 7.
    W.-F. Lai, Biomaterials, 35, 401 – 411 (2014).CrossRefPubMedGoogle Scholar
  8. 8.
    G. Crini, Chem. Rev., 114, 10940 – 10975 (2014).CrossRefPubMedGoogle Scholar
  9. 9.
    R. Challa, A. Ahuja, J. Ali, et al., AAPS PharmSciTech, 6, E329-E357 (2005).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    A. Heydari and H. Sheibani, RSC Adv., 6, 9760 – 9771 (2016).CrossRefGoogle Scholar
  11. 11.
    A. Heydari and H. Sheibani, RSC Adv., 5, 82438 – 82449 (2015).CrossRefGoogle Scholar
  12. 12.
    A. Heydari, H. Khoshnood, H. Sheibani, et al., Polym. Adv. Technol., 28, 524 – 532 (2017).CrossRefGoogle Scholar
  13. 13.
    H. Namazi, A. Heydari, and A. Pourfarzolla, Int. J. Polym. Mater. Polym. Biomater., 63, 1 – 6 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Yu, L. Zuo, H. Liu, et al., Biomed. Chromatogr., 27, 1027 – 1033 (2013).CrossRefPubMedGoogle Scholar
  15. 15.
    I. Zgani, H. Idriss, C. Barbot, et al., Org. Biomol. Chem., 15, 564 – 569 (2017).CrossRefPubMedGoogle Scholar
  16. 16.
    M. Grachev, A. Edunov, G. Kurochkina, et al., Russ. J. Org. Chem., 47, 284 – 289 (2011).CrossRefGoogle Scholar
  17. 17.
    M. Grachev, A. Edunov, G. Kurochkina, et al., Russ. J. Gen. Chem., 81, 322 – 329 (2011).CrossRefGoogle Scholar
  18. 18.
    C. Loukou, P. Changenet-Barret, M. N. Rager, et al., Org. Biomol. Chem., 9, 2209 – 18 (2011).CrossRefPubMedGoogle Scholar
  19. 19.
    X.-H. Lai and S.-C. Ng, Tetrahedron Lett., 45, 4469 – 4472 (2004).CrossRefGoogle Scholar
  20. 20.
    A. R. Hedges, Chem. Rev., 98, 2035 – 2044 (1998).CrossRefPubMedGoogle Scholar
  21. 21.
    J. Pitha, J. Milecki, H. Fales, et al., Int. J. Pharm., 29, 73 – 82 (1986).CrossRefGoogle Scholar
  22. 22.
    C. T. Rao, B. Lindberg, J. Lindberg, et al., J. Org. Chem., 56, 1327 – 1329 (1991).CrossRefGoogle Scholar
  23. 23.
    H. Binch, K. Stangier, and J. Thiem, Carbohydr. Res., 306, 409 – 419 (1998).CrossRefGoogle Scholar
  24. 24.
    S. Berto, M. C. Bruzzoniti, R. Cavalli, et al., J. Incl. Phenom. Macrocyclic Chem., 57, 631 – 636 (2007).CrossRefGoogle Scholar
  25. 25.
    S. Berto, M. C. Bruzzoniti, R. Cavalli, et al., J. Incl. Phenom. Macrocyclic Chem., 57, 637 – 643 (2007).CrossRefGoogle Scholar
  26. 26.
    C. A. Kozlowski, T. Girek, W. Walkowiak, et al., Sep. Purif. Technol., 46, 136 – 144 (2005).CrossRefGoogle Scholar
  27. 27.
    G. Crini, N. Morin, J. C. Rouland, et al., Eur. Polym. J., 38, 1095 – 1103 (2002).CrossRefGoogle Scholar
  28. 28.
    G. Crini, Dyes Pigm., 77, 415 – 426 (2008).CrossRefGoogle Scholar
  29. 29.
    S. Cadars, M. F. Foray, A. Gadelle, et al., Carbohydr. Polym., 61, 88 – 94 (2005).CrossRefGoogle Scholar
  30. 30.
    E. Y. Ozmen and M. Yilmaz, J. Hazard. Mater., 148, 303 – 310 (2007).Google Scholar
  31. 31.
    B. Martel, P. L. Thuaut, S. Bertini, et al., J. Appl. Polym. Sci., 85, 1771 – 1778 (2002).CrossRefGoogle Scholar
  32. 32.
    Y. E. Ghoul, B. Martel, M. Morcellet, et al., J. Incl. Phenom. Macrocyclic Chem., 57, 47 – 52 (2007).CrossRefGoogle Scholar
  33. 33.
    L. Ducoroy,M. Bacquet, B. Martel, et al., React. Funct. Polym., 68, 594 – 600 (2008).CrossRefGoogle Scholar
  34. 34.
    A. Celebioglu and T. Uyar, J. Colloid Interface Sci., 404, 1 – 7 (2013).CrossRefPubMedGoogle Scholar
  35. 35.
    A. Celebioglu and T. Uyar, Chem. Commun., 46, 6903 – 6905 (2010).CrossRefGoogle Scholar
  36. 36.
    J. L. Manasco, C. D. Saquing, C. Tang, et al., RSC Adv., 2, 3778 – 3784 (2012).CrossRefGoogle Scholar
  37. 37.
    A. Celebioglu, O. C. Umu, T. Tekinay, et al., Colloids Surf. B, 116, 612 – 619 (2014).CrossRefGoogle Scholar
  38. 38.
    W. Zhang, M. Chen, B. Zha, et al., Phys. Chem. Chem. Phys., 14, 9729 – 9737 (2012).CrossRefPubMedGoogle Scholar
  39. 39.
    J. A. Bhushani and C. Anandharamakrishnan, Trends Food Sci. Tech., 38, 21 – 33 (2014).CrossRefGoogle Scholar
  40. 40.
    A. Costoya, F. M. Ballarin, J. Llovo, et al., Int. J. Pharm., 513, 518 – 527 (2016).CrossRefPubMedGoogle Scholar
  41. 41.
    J. Bai, Q. Yang, M. Li, et al., J. Mater. Process. Tech., 208, 251 – 254 (2008).CrossRefGoogle Scholar
  42. 42.
    T. Uyar, R. Havelund, Y. Nur, et al., J. Membrane Sci., 365, 409 – 417 (2010).CrossRefGoogle Scholar
  43. 43.
    T. Uyar and F. Besenbacher, Eur. Polym. J., 45, 1032 – 1037 (2009).CrossRefGoogle Scholar
  44. 44.
    T. Uyar, J. Hacaloglu, and F. Besenbacher, React. Funct. Polym., 69, 145 – 150 (2009).CrossRefGoogle Scholar
  45. 45.
    W. Zhang, M. Chen, and G. Diao, Carbohyd. Polym., 86, 1410 – 1416 (2011).CrossRefGoogle Scholar
  46. 46.
    S. Wang, J. Bai, C. Li, et al., Appl. Surf. Sci., 261, 499 – 503 (2012).CrossRefGoogle Scholar
  47. 47.
    T. Subbiah, G. S. Bhat, R. W. Tock, et al., J. Appl. Polym. Sci., 96, 557 – 569 (2005).CrossRefGoogle Scholar
  48. 48.
    E. Renard, A. DerataniI, G. Volet, et al., Eur. Polym. J., 33, 49 – 57 (1997).CrossRefGoogle Scholar
  49. 49.
    N. Mushtaq, G. Chen, L. R. Sidra, et al., Polym. Chem., 7, 7427 – 7435 (2016).CrossRefGoogle Scholar
  50. 50.
    S. Menuel, S. Porwanski, and A. Marsura, New J. Chem., 30, 603 – 608 (2006).CrossRefGoogle Scholar
  51. 51.
    K. Takeo, H. Mitoh, and K. Uemura, Carbohydr. Res., 187, 203 – 221 (1989).CrossRefGoogle Scholar
  52. 52.
    Z.-T. Liu, L.-H. Shen, Z.-W. Liu, et al., J. Mater. Sci., 44, 1813 – 1820 (2009).CrossRefGoogle Scholar
  53. 53.
    H. J. Powers, Am. J. Clin. Nutr., 77, 1352 – 1360 (2003).CrossRefPubMedGoogle Scholar
  54. 54.
    H. M. Said and C. Ross, Modern Nutr. Health Disease, 11, 325 – 330 (2011).Google Scholar
  55. 55.
    D. K. Roy, N. Deb, B. C. Ghosh, et al., Spectrochim. Acta A, 73, 201 – 204 (2009).CrossRefGoogle Scholar
  56. 56.
    I. V. Terekhova, M. N. Tikhova, T. V. Volkova, et al., J. Incl. Phenom. Macrocyclic Chem., 69, 167 – 172 (2011).CrossRefGoogle Scholar
  57. 57.
    X.-M. Wang and H.-Y. Chen, Spectrochim. Acta A, 52, 599 – 605 (1996).CrossRefGoogle Scholar
  58. 58.
    Y. L. Loukas, V. Vraka, and G. Gregoriadis, J. Pharm. Pharmacol., 49, 127 – 130 (1997).CrossRefPubMedGoogle Scholar
  59. 59.
    P. W. Morrison, C. J. Connon, and V. V. Khutoryanskiy, Mol. Pharm., 10, 756 – 62 (2013).CrossRefPubMedGoogle Scholar
  60. 60.
    W. Zielenkiewicz, I. Terekhova, M. KoŸbia3, et al., J. Therm. Anal. Calorim., 101, 595 – 600 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abolfazl Heydari
    • 1
  • Fatemeh Mehrabi
    • 2
  • Tayebeh Shamspur
    • 2
  • Hassan Sheibani
    • 2
  • Ali Mostafavi
    • 2
  1. 1.Young Researchers and Elite Club, Kerman BranchIslamic Azad UniversityKermanIran
  2. 2.Department of ChemistryShahid Bahonar University of KermanKermanIran

Personalised recommendations