Advertisement

Pharmaceutical Chemistry Journal

, Volume 51, Issue 12, pp 1078–1081 | Cite as

Coumarinyl Thiosemicarbazides as Antimicrobial Agents

  • M. Molnar
  • M. Tomić
  • V. PavićEmail author
Article
  • 118 Downloads

Two series of coumarinyl thiosemicarbazides were synthesized: one, using the coumarin core substituted in position 7 and another, using same core substituted in position 4. All these compounds were obtained in reactions of the corresponding hydrazide and various isothiocyanates. The structures of all products were confirmed by the 1H and 13C NMR and mass spectrometry techniques. The antimicrobial properties of compounds were tested on four bacterial strains: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. 2-(2-(7-Hydroxy-2-oxo-2H-chromen-4-yl)acetyl)-N-(2,4,6-trichlorophenyl)hydrazine-1-carbothioamide was found to be the most potent agent against B. subtilis.

Keywords

thiosemicarbazide coumarin antibacterial activity 

References

  1. 1.
    K. C. Fylaktakidou, D. J. Hadjipavlou-Litina, K.E. Litinas, et al., Curr. Pharm. Des., 10, 3813 – 3833 (2004).CrossRefPubMedGoogle Scholar
  2. 2.
    I. Kostova, Curr. Med. Chem. Anti-Cancer Agents, 5, 29 – 46 (2005).CrossRefPubMedGoogle Scholar
  3. 3.
    M. Molnar, B. Šarkanj, M. Čačić, et al., Pharm. Chem., 6, 313 – 320 (2014).Google Scholar
  4. 4.
    B. Šarkanj, M. Molnar, M. Čačić, et al., Food Chem., 139, 488 – 495 (2013).CrossRefPubMedGoogle Scholar
  5. 5.
    A. Basile, S. Sorbo, V. Spadaro, et al., Mol. Basel Switz., 14, 939 – 952 (2009).Google Scholar
  6. 6.
    N. Radulović, G. Stojanović, R. Vukićević et al., Monatsh. Chem., 137, 1477 – 1486 (2006).CrossRefGoogle Scholar
  7. 7.
    N. N. Farshori, M. R. Banday, A. Ahmad, et al., Med. Chem. Res., 20, 535 – 541 (2011).CrossRefGoogle Scholar
  8. 8.
    P. Manojkumar, T. K. Ravi, and G. Subbuchettiar, Acta Pharm., 59, 159 – 170 (2009).CrossRefPubMedGoogle Scholar
  9. 9.
    D. Klayman, J. Scovill, J. Bruce, et al., J. Med. Chem., 27, 84 – 87 (1984).CrossRefPubMedGoogle Scholar
  10. 10.
    M. Kalhor, M. Shabani, I. Nikokar, et al., Iran. J. Pharm. Res., 14, 67 – 75 (2015).PubMedPubMedCentralGoogle Scholar
  11. 11.
    M. Pitucha, M. Woś, M. Miazga-Karska, et al., Med. Chem. Res., 25, 1666 – 1677 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    T. A. Yousef, F. A. Badria, S. E. Ghazy, et al., Int. J. Med. Med. Sci., 3, 37 – 46 (2011).Google Scholar
  13. 13.
    R. S. Kumar, A. Idhayadhulla, A. J. A. Nasser, et al., Eur. J. Med. Chem., 46, 804 – 810 (2011).CrossRefPubMedGoogle Scholar
  14. 14.
    X.-M. Peng, G. L. V. Damu, and C.-H. Zhou, Curr. Pharm. Des., 19, 3884 – 3930 (2013).CrossRefPubMedGoogle Scholar
  15. 15.
    G. Pelosi, Open Crystallogr. J., 3, 16 – 28 (2010).CrossRefGoogle Scholar
  16. 16.
    M. U. Yamaguchi, A. P. Barbosa da Silva, T. Ueda-Nakamura, et al., Molecules, 14, 1796 – 1807 (2009).CrossRefPubMedGoogle Scholar
  17. 17.
    G. Cihan-Üstündağ, E. Gürsoy, L. Naesen, s, et al., Bioorg. Med. Chem., 24, 240 – 246 (2016).Google Scholar
  18. 18.
    P. Gautam, O. Prakash, R. K. Dani, et al., J. Mol. Struct., 1127, 489 – 497 (2017).CrossRefGoogle Scholar
  19. 19.
    T. A. Yousef, G. M. Abu El-Reash, O. A. El-Gammal, et al., Egypt. J. Basic Appl. Sci., 3, 44 – 60 (2016).CrossRefGoogle Scholar
  20. 20.
    U. Salgin-Gökşen, N. Gökhan-Kelekçi, O. Göktaş, et al., Bioorg. Med. Chem., 15, 5738 – 5751 (2007).CrossRefPubMedGoogle Scholar
  21. 21.
    K. P. Barot, K. S. Manna, and M. D. Ghate, J. Saudi Chem. Soc., 21, Suppl. 1, S35 – S43 (2017).Google Scholar
  22. 22.
    S. Barbuceanu, G. Bancescu, O. Cretu, et al., Rev. Chim., 61, 140 – 145 (2010).Google Scholar
  23. 23.
    S. K. Narwade, V. B. Halnor, N. R. Dalvi, et al., Indian J. Chem., 45B, 2776 – 2780 (2006).Google Scholar
  24. 24.
    M. Cacic, M. Trkovnik, F. Cacic, et al., Molecules, 11, 134 – 147 (2006).CrossRefPubMedGoogle Scholar
  25. 25.
    M. Molnar, V. Pavić, B. Šarkanj, et al., Heterocycl. Commun., 23, 35 – 42(2017).CrossRefGoogle Scholar
  26. 26.
    E. B. Hirsch and V. H. Tam, Expert Rev. Pharmacoecon. Outcomes Res., 10, 441 – 451 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    P. D. Lister, D. J. Wolter, and N. D. Hanson, Clin. Microbiol. Rev., 22, 582 – 610 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    J. Echeverría, J. Opazo, L. Mendoza, et al., Molecules, 22, 608 (2017).CrossRefGoogle Scholar
  29. 29.
    S. N. Aslam, P. C. Stevenson, T. Kokubun, et al., Microbiol. Res., 164, 191 – 195 (2009).CrossRefPubMedGoogle Scholar
  30. 30.
    S. M. de Souza, F. Delle Monache, and A. Smânia, Z. Naturforsch. C: J. Biosci. 60, 693 – 700 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Food TechnologyJosip Juraj Strossmayer University of OsijekOsijekCroatia
  2. 2.Department of BiologyJosip Juraj Strossmayer University of OsijekOsijekCroatia

Personalised recommendations