Skip to main content
Log in

Captopril-Loaded Superparamagnetic Nanoparticles as a New Dual-Mode Contrast Agent for Simultaneous In Vitro/In Vivo MR Imaging and Drug Delivery System

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Superparamagnetic iron oxide nanoparticles (SPIONs) are widely applied as magnetic resonance imaging (MRI) contrast agents and drug carriers in drug delivery systems (DDSs) for diagnostics and treatment of diseases. Observation of drug delivery, drug release, and monitoring of the treatment can be performed by MRI. Magnetic nanoparticles (MNPs) can be used as dual-mode agents for simultaneous MRI contrast and drug delivery. Application of dual-mode MRI-contrast and drug-carrier agent is especially useful in targeted DDS. In this study, we report on the preparation of captopril-coated MNPs as a new dual-mode agent for simultaneous MRI contrast and DDS. The influence of contrast agent on the longitudinal (T1) and transverse (T2, T2*) relaxation times was studied and it was found that the effect on T2 and T2* exceeds the effect on T1, which leads to darkening of the MR image. Release of captopril from γ-Fe2O3@SiO2@captopril system was studied at three pH values and it was established that the drug release at pH 1.2 was greater than that at pH 4.8 and 7.4. The obtained results show that MNPs loaded with captopril can be used as dual-mode MRI contrast agent and DDS system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. K. Swedberg, J. Kjekshus, CTS Group, Am. J. Cardiol., 62, 60A – 66A (1988).

    Article  CAS  PubMed  Google Scholar 

  2. SOLVD Investigators, New Engl. J. Med., 325, 293 – 302 (1991).

    Article  Google Scholar 

  3. M. Ehlers, E. A. Fox, D. J. Strydom, and J. F. Riordan, Proc. Natl. Acad. Sci. USA, 86, 7741 – 7745 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Pourahmad, M.-J. Hosseini, S. Bakan, and M. Ghazi-Khansari, Pest. Biochem. Physiol., 99, 105 – 110 (2011).

    Article  CAS  Google Scholar 

  5. M. Prabhu, S. Palaian, A. Malhotra, et al., Kathmandu Univ. Med. J. (KUMJ), 3, 296 – 304 (2004).

    Google Scholar 

  6. H. Kubinyi, J. Taylor, and C. Ramdsen, Compr. Med. Chem., 4, 589 (1990).

    CAS  Google Scholar 

  7. H.-P. Li, J.-J. Zhang, L. Qin, and M.-D. Zhao, Res. Chem. Intermed., 39, 621 – 629 (2013).

    Article  CAS  Google Scholar 

  8. J. Zeng, P. Du, L. Liu, et al., Mol. Pharm., 12, 4188 – 4199 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. H.-Y. Park, M. J. Schadt, L. Wang, et al., Langmuir, 23, 9050 – 9056 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Z. Luo, K. Cai, Y. Hu, et al., Adv. Mater., 24, 431 – 435 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. L. Wang, J. Bao, L. Wang, et al., Eur. J. Chem., 12, 6341 – 6347 (2006).

    Article  CAS  Google Scholar 

  12. H. Qiu, B. Cui, G. Li, et al., J. Phys. Chem. C, 118, 14929 – 14937 (2014).

    Article  CAS  Google Scholar 

  13. L. Zhang, W.-F. Dong, and H.-B. Sun, Nanoscale, 5, 7664 – 7684 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. X. Zhang, L. Clime, H. Roberge, et al., J. Phys. Chem. C, 115, 1436 – 1443 (2010).

    Article  Google Scholar 

  15. H. B. Na, I. C. Song, and T. Hyeon, Adv. Mater., 21, 2133 – 2148 (2009).

    Article  CAS  Google Scholar 

  16. S. Shen, F. Kong, X. Guo, et al., Nanoscale, 5, 8056 – 8066 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. S. Laurent, D. Forge, M. Port, et al., Chem. Rev., 108, 2064 – 2110 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. G. Wang, X. Zhang, A. Skallberg, et al., Nanoscale, 6, 2953 – 2963 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. E. Terreno and S. Aime, Front. Pharmacol., 6, 290 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. B. H. McDonagh, G. Singh, S. Hak, et al., Small, 12, 301 – 306 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Z. Bao, J. A. Rogers, and H. E. Katz, J. Mater. Chem. 9, 1895 – 1904 (1999).

    Article  CAS  Google Scholar 

  22. B. Z. Tang, Y. Geng, J. W. Y. Lam, et al., Chem. Mater., 11, 1581 – 1589 (1999).

    Article  CAS  Google Scholar 

  23. K. M. Ho and P. Li, Langmuir, 24, 1801 – 1807 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. S. Sobhani,, Z. M. Falatooni, and M. Honarmand, RSC Adv., 4, 15797 – 15806 (2014).

    Article  CAS  Google Scholar 

  25. K. Azizi and A. Heydari, RSC Adv., 4, 8812 – 8816 (2014).

    Article  CAS  Google Scholar 

  26. Y. Zhang, M. Yang, N. G. Portney, et al., Biomed. Microdev., 10, 321 – 328 (2008).

    Article  CAS  Google Scholar 

  27. M. Khalkhali, S. Sadighian, K. Rostamizadeh, et al., Nanomed. J., 2, 223 – 230 (2015).

    Google Scholar 

  28. N. Arsalani, H. Fattahi, and M. Nazarpoor, Express Polym. Lett., 4, 329 – 338 (2010).

    Article  CAS  Google Scholar 

  29. N. Lee and T. Hyeon, Chem. Soc. Rev., 41, 2575 – 2589 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. N. Sattarahmady, T. Zare, A. Mehdizadeh, et al., Coll. Surf. B: Biointerfaces, 129, 15 – 20 (2015).

    Article  CAS  Google Scholar 

  31. T. He, P. D. Gatehouse, G. C. Smith, Magn. Reson. Med., 60, 1082 – 1089 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. T. He, P. D. Gatehouse, P. Kirk, et al., Magn. Reson. Med., 60, 350 – 356 (2008).

    Article  PubMed  Google Scholar 

  33. X. Yang, J. J. Grailer, I. J. Rowland, et. al., ACS Nano, 4, 6805 – 6817 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Y. W. Jun, J. H. Lee, and J. Cheon, Angew. Chem. Intern. Ed., 47, 5122 – 5135 (2008).

    Article  CAS  Google Scholar 

  35. S. Sitthichai, C. Pilapong, T. Thongtem, and S. Thongtem, App. Surf. Sci., 356, 972 – 977 (2015).

    Article  CAS  Google Scholar 

  36. S. Tong, S. Hou, Z. Zheng, et al., Nano Lett., 10, 4607 – 4613 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. Van Roosbroeck, W. Van Roy, T. Stakenborg, et al., ACS Nano, 8, 2269 – 2278 (2014).

    Article  PubMed  Google Scholar 

  38. G. Fu, L. Zhu, K. Yang, et al., ACS Appl. Mater. Interfaces, 8, 5137 – 5147 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Sistan and Baluchestan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shaterian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pour, S.A., Shaterian, H.R. Captopril-Loaded Superparamagnetic Nanoparticles as a New Dual-Mode Contrast Agent for Simultaneous In Vitro/In Vivo MR Imaging and Drug Delivery System. Pharm Chem J 51, 852–862 (2018). https://doi.org/10.1007/s11094-018-1704-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1704-x

Keywords

Navigation