Skip to main content
Log in

Comparison of the Antitumor Efficacy of Bismuth and Gadolinium as Dose-Enhancing Agents in Formulations for Photon Capture Therapy

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The efficacy of photon capture therapy (PCT) is to a significant extent determined by the properties of the formulation containing the element efficiently absorbing external X-irradiation and operating as a dose-enhancing agent (DEA). We report here a comparison of the efficacies of bismuth and gadolinium as DEA in PCT technologies with X-irradiation at 110 kV for the treatment of superficial tumors. Bismuth and gadolinium are comparable in that they are available as the same chemical form – a complex with diethylenetriaminepentaacetic acid, for which the physicochemical properties are similar for both elements. Studies were performed on mice with transplanted B16F10 melanoma as a tumor model. Both DEAwere given by the intratumor route at the same dose of 5 mg of DEAper animal. Irradiation was with an x-ray apparatus with a tension of 110 kV using a dose of 20 Gy. The results showed significantly greater antitumor efficacy for PCT with both gadolinium and bismuth than with short-focus radiotherapy. In terms of the log dead cells (lgN), there was an increase in lgN from 0.78 for short-focus irradiation to 2.5 for PCT using gadolinium or bismuth, with identical dose exposure. There were no significant differences in the antitumor efficacies of PCT with bismuth and gadolinium for x-ray irradiation at 110 kV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. R. Siegel, K. Miller, and A. Jemal, CA Cancer J. Clin., 65(1), 5 – 29 (2015).

    Article  PubMed  Google Scholar 

  2. V. N. Kulakov, A. A. Lipengol’ts, and N. L. Shimanovskii, Rus. J. Gen. Chem., 83(12), 2559 – 2564 (2013).

    Article  CAS  Google Scholar 

  3. V. N. Kulakov, E. Yu. Grigor’eva, A. A. Lipengol’ts, et al., Yadern. Fiz. Inzhinir., No. 11, 47 – 54 (2011).

  4. J. C. Roeske, L. Nunez, M. Hoggarth, et al., Technol. Cancer Res. Treat, 6(5), 395 – 401 (2007).

    Article  PubMed  Google Scholar 

  5. S. H. Cho, Phys. Med. Biol., 50, 163 – 173 (2005).

    Article  Google Scholar 

  6. F. H. Adams, A. Norman, R. S. Mello, et al., Radiology, No. 124, 823 – 826 (1977).

  7. R. Santos, H. Callisen, J. Winter, et al., Med. Physics, 10(1), 75 – 78 (1983).

    Article  Google Scholar 

  8. A. A. Cherepanov, A. A. Lipengol’ts, T. A. Nasonova, et al., Med. Fiz., 63(3), 66 – 69 (2014).

    Google Scholar 

  9. A. A. Lipengolts, A. A. Cherepanov, V. N. Kulakov, et al., Appl. Radiat. Isot., 106, 233 – 236 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, Phys. Med. Biol., 49, N309-N315 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. J. F. Hainfeld, H. M. Smilowitz, M. J. O’Connor, et al., Nanomedicine, 8(10), 1601 – 1609 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. J. H. Rose, A. Norman, M. Ingram, et al., Int. J. Radiat. Oncol. Biol. Phys., 45(5), 1127 – 1132 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. A. Norman, M. Ingram, R. G. Skillen, et al., Radiat. Oncol. Investig, 5, 8 – 14 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. V. N. Kulakov, T. P. Klimova, Yu. V. Gol’tyapin, et al., Koordinats. Khimiya, 36(4), 1 – 4 (2010).

  15. F. Cotton, and J. Wilkinson, Advanced Inorganic Chemistry [Russian translation], M. E. Dyatlova (ed.), Mir, Moscow (1969), part 3, pp. 500 – 509.

  16. F. Cotton, and J. Wilkinson, Advanced Inorganic Chemistry [Russian translation], M. E. Dyatlova (ed.), Mir, Moscow (1969), Part 2, pp. 339.

  17. N. K. Sviridov, P. V. Sergeev, V. O. Panov, et al., Vopr. Onkol., 45(2), 167 – 171 (1999).

    CAS  Google Scholar 

  18. V. N. Kulakov, T. P. Klimova, Yu. V. Gol’tyapin, et al., Rus. J. Gen. Chem., 36(5), 333 – 336 (2010).

  19. A. N. Mironov (ed.), Guidelines for Preclinical Studies of Drugs [in Russian], Grif i K, Moscow (2013), Part 1.

  20. B. A. Teicher and P. A. Andrews, Anticancer Drug Development Guide. Preclinical screening, Clinical Trials and Approval, Humana Press, New Jersey (2004).

    Book  Google Scholar 

  21. H. M. Garnica-Garza, Technol. Cancer Res. Treat, 9(3), 271 – 278 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 51, No. 9, pp. 34 – 37, September, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipengol’ts, A.A., Cherepanov, A.A., Kulakov, V.N. et al. Comparison of the Antitumor Efficacy of Bismuth and Gadolinium as Dose-Enhancing Agents in Formulations for Photon Capture Therapy. Pharm Chem J 51, 783–786 (2017). https://doi.org/10.1007/s11094-017-1693-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-017-1693-1

Keywords

Navigation